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Abstract: A manifold is a Hausdorff topological space with some neighborhood of a point that looks like an open set in a 

Euclidean space. The concept of Euclidean space to a topological space is extended via suitable choice of coordinates. 

Manifolds are important objects in mathematics, physics and control theory, because they allow more complicated structures to 

be expressed and understood in terms of the well–understood properties of simpler Euclidean spaces. A differentiable manifold 

is defined either as a set of points with neighborhoods homeomorphic with Euclidean space, R
n
 with coordinates in overlapping 

neighborhoods being related by a differentiable transformation or as a subset of R, defined near each point by expressing some 

of the coordinates in terms of the others by differentiable functions. This paper aims at making a step by step introduction to 

differential manifolds.  
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1. Introduction 

The concept of manifolds is central to many parts of 

geometry and modern mathematical physics because it 

allows more complicated structures to be expressed and 

understood in terms of the relatively well-understood 

properties of simpler spaces. Intuitively, a manifold is a 

generalization of curves and surfaces to higher dimensions. It 

is locally Euclidean in that every point has a neighborhood, 

called a chart, homeomorphic to an open subset. The 

coordinates on a chart allow one to carry out computations as 

though in a Euclidean space, such as differentiability, point-

derivations, tangent spaces, and differential forms, carry over 

to a manifold, [1], [2], [7]. For most applications, a special 

kind of topological manifold, a differentiable manifold, is 

used. If the local charts on a manifold are compatible in a 

certain sense, one can define directions, tangent spaces, and 

differentiable functions on that manifold. In particular it is 

possible to use calculus on a differentiable manifold. Each 

point of a differentiable manifold has a tangent space. This is 

a Euclidean space consisting of the tangent vectors of the 

curves through the point. Two important classes of 

differentiable manifolds are smooth and analytic manifolds. 

For smooth manifolds the transition maps are smooth, that is 

infinitely differentiable. Analytic manifolds are smooth 

manifolds with the additional condition that the transition 

maps are analytic. In other words, a differentiable (or, smooth) 

manifold is a topological manifold with a globally defined 

differentiable (or, smooth) structure, [1], [3], [4]. A 

topological manifold can be given a differentiable structure 

locally by using the homeomorphisms in the atlas of the 

topological space. The global differentiable structure is 

induced when it can be shown that the natural compositions 

of the homeomorphisms between the corresponding open 

Euclidean spaces are differentiable on overlaps of charts in 

the atlas. Therefore, the coordinates defined by the 

homeomorphisms are differentiable with respect to each 

other when treated as real valued functions with respect to 

the variables defined by other coordinate systems whenever 

charts overlap, [5]. This idea is often presented formally 

using transition maps. This allows one to extend the meaning 

of differentiability to spaces without global coordinate 

systems. Specifically, a differentiable structure allows one to 

define a global differentiable tangent space, and consequently, 

differentiable functions, and differentiable tensor–fields, [1], 

[2], [3], [11]. 

Differentiable manifolds are very important in physics. 

Special kinds of differentiable manifolds form the arena for 

physical theories such as classical mechanics, general 

relativity and Yang–Mills gauge theory. It is possible to 
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develop calculus on differentiable manifolds, leading to such 

mathematical machinery as the exterior calculus. Historically, 

the development of differentiable manifolds is usually 

credited to C. F. Gauss and his student B. Riemann. The work 

of physicists J. C. Maxwell and A. Einstein lead to the 

development of the theory transformations between 

coordinate systems which preserved the essential geometric 

properties. Eventually these ideas were generalized by H. 

Weyl who essentially considered the coordinate functions in 

terms of other coordinates and to assume differentiability for 

the coordinate function, [1], [3], [4], [5].  

2. Differential Manifolds 

2.1. Basics 

Definition 2.1: A topology on a set X is a collection T of 

subsets of X such that 

φ  and X are in T. 

The union of an arbitrary collection of elements of T is in 

T. 

The intersection of a finite collection of elements of T is in 

T, [6], [8]. 

Definition 2.2: A basis for a topology on a set X is a 

collection B of subsets of X such that 

For each x X∈  there exists a BB∈ containing x. 

If 1 2, BB B ∈
 

and 1 2x B B∈ ∩ , then there exists a 

3 1 2B B B⊂ ∩  such that. 

The basis B generates a topology T by defining a set 

U X⊂  to be open if for each x U∈  there exists a basis 

element BB∈ with 0x B∈ ⊂ , [6], [8].  

Definition 2.3: Let X and Y be topological spaces. The 

product topology on the product set X Y×  is generated by 

the basis elements U V× , for all open sets U X∈  and 

V Y∈ , [6], [9], [11]. 

Topology developed from the desire to generalize the 

notion of continuity of mappings of Euclidean spaces. That 

generalization is phrased as follows: 

Definition 2.4: Let X and Y be topological spaces. A 

mapping :f X Y→
 

is continuous if for each open set 

U Y⊂ , the set 1( )f U−  is open in X, [6], [9], [11]. 

Definition 2.5: Let X and Y be topological spaces. A 

mapping :f X Y→  is a homeomorphism if it is bijective 

and both f  and 1f −  are continuous. In this case X and Y 

are said to be homeomorphic. 

When X and Y are homeomorphic, there is a bijective 

correspondence between both the points and the open sets of 

X and Y. Therefore, as topological spaces, X and Y are 

indistinguishable. This means that any property or theorem 

that holds for the space X that is based only on the topology 

of X also holds for Y, [6], [8]. 

Definition 2.6: A topological space X is said to be 

Hausdorff if for any two distinct points ,x y X∈
 

there exist 

disjoint open sets U and V with x U∈  and y V∈ , [6], [8]. 

Definition 2.7: A separation of a topological space X is a 

pair of disjoint open sets ,U V  such that X U V= ∪ . If no 

separation of X exists, it is said to be connected, [6], [8]. 

2.2. Topological Manifolds 

A manifold is a topological space that is locally equivalent 

to Euclidean space. 

Definition 2.8: A manifold is a Hausdorff space M with a 

countable basis such that for each point p M∈
 

there is a 

neighborhood U of p that is homeomorphic to 
nR  for some 

integer n. 

If the integer n is the same for every point in M, then M is 

called a n-dimensional manifold, [6], [8].  

2.3. Differentiable Structures on Manifolds 

Differentiation of mappings in Euclidean space is defined 

as a local property. Although a manifold is locally 

homeomorphic to Euclidean space, more structure is required 

to make differentiation possible. Any function on Euclidean 

space : nf R R→
 

is smooth or C
∞

 if all of its partial 

derivatives exist.  

A mapping of Euclidean spaces : m nf R R→
 

can be 

thought of as a n-tuple of real-valued functions on

1, ( ,......, )m nR f f f= , and f  is smooth if each fi is 

smooth. 

Given two neighborhoods ,U V  in a manifold M, two 

homeomorphisms :
n

x U R→  and : V ny R→
 

are said to 

be C
∞

-related if the mappings 1 : ( ) ( )x y y U V x U V− ∩ → ∩�  

and 1 : ( ) ( )y x x U V y U V− ∩ → ∩�  are C
∞

, [6], [8], [9], [11]. 

2.4. Smooth Functions and Mappings 

The pair ( , )x U  is called a chart or coordinate system, and 

can be thought of as assigning a set of coordinates to points 

in the neighborhood U , figure 1. A collection of charts 

whose domains cover M is called an atlas, [5], [8], [9], [11].  

 

Figure 1. A local coordinate system ( , )x U  on a manifold M. 

Definition 2.9: An atlas A  on a manifold M  is said to 

be maximal if for any compatible atlas 
'A  on M  any 

coordinate chart '( , )x U A∈  is also a member of A , [3], [6], 

[8]. 
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Definition 2.10: A smooth structure on a manifold M  is a 

maximal atlas A  on M . The manifold M  along with 

such an atlas is termed a smooth manifold. 

Consider a function :f M R→
 

on the smooth manifold 

M . This function is said to be a smooth function if for every 

coordinate chart ( , )x U  on M  the function 

1:f x U R− →�
 

is smooth. More generally, a mapping 

:f M N→  of smooth manifolds is said to be a smooth 

mapping if for each coordinate chart ( , )x U  on M  and 

each coordinate chart ( , )y V  on N  the mapping 

1: ( ) ( )y f x x U y V− →� �  is a smooth mapping, [3], [6], [8]. 

Definition 2.11: Given two smooth manifolds ,M N , a 

bijective mapping :f M N→  is called a diffeomorphism if 

both f  and 1f −  are smooth mappings, [3], [6], [8], [10], 

[11]. 

2.5. Differentiable Manifolds 

Differentiable manifolds are spaces that locally behave like 

Euclidean space. Much in the same way that topological 

spaces are natural for talking about continuity; differentiable 

manifolds are a natural setting for calculus. Notions such as 

differentiation, integration, vector fields, and differential 

equations make sense on differentiable manifolds. This 

section gives a review of the basic construction and 

properties of diferentiable manifolds, [3], [4], [8], [10]. 

Definition 2.12: Any atlas could be extended to maximal 

atlas by adding all charts that are C∞
 compatible with charts 

of A . The maximal atlas is called differentiable structure on 

the manifold M . A pair ( , )M A , for a topological manifold 

M of n-dimensions is called differential manifold, [3], [6], 

[8], [10]. 

3. Differentiation of Functions 

There are various ways to define the derivative of a 

function on a differentiable manifold, the most fundamental 

of being the directional derivative. The definition of the 

directional derivative is complicated by the fact that a 

manifold will lack a suitable affine structure with which to 

define vector. The directional derivative therefore looks at 

curves in the manifold instead of vectors, [3], [6], [8]. 

3.1. Directional Differentiation 

Given a real valued function f on an m dimensional 

differentiable manifold M, the directional derivative of f at a 

point p in M is defined as follows. Suppose that g (t) is a 

curve in M with (0)g p= , which is differentiable in the sense 

that its composition with any chart is a differential curve in 
nR . Then the directional derivative of f at p along g is 

( ( ))
0

g t
t

df
=

. The directional derivative only depends on the 

tangent vector of the curve at the point consindered, p for this 

case. Thus a definition of directional differentiation adapted 

to the cases of differentiable manifolds ultimately captures 

the intuitive features of directional differentiation in an affine 

space, [3], [6], [8], [11]. 

3.2. Tangent Spaces and Derivatives 

Definition 3.1: Suppose that M  is a smooth m-

dimensional manifold of some Euclidean space 
nR . Let 

:f U M→  be a local parameterization around some point 

x M∈  with (0) xφ = . The tangent space xT M
 

is the 

image of the map 0 : m nd R Rφ → where xT M  is an m-

dimensional subspace of 
nR . The vectors in this space are 

called tangent vectors. 

Given a smooth map of manifolds ,M N , :f M N→ , 

and a local parameterization : , (0)U M x Mφ φ→ = ∈  and 

: , (0) ( )V N f x Nφ ψ→ = ∈ .  

Let h be the map 1 :h f U Vψ φ−= →� � , the we define 

the differential of f at x by ( ):x x f xdf T M T N→   

1
0 0 0xdf d dh dψ φ −= � �  

The collection of tangent spaces at all points can in turn be 

made into a manifold, the tangent bundle, whose dimension 

is 2n. The tangent bundle is where tangent vectors lie, and is 

itself a differentiable manifold, [3], [4], [5], [8], [10], [11]. 

3.3. Immersions, Submersions and Embeddings 

The maps ( ):x x f xdf T M T N→  for all points x M∈  

assemble to a map of tangent bundles,  

Definition 3.2: A map f is called a submersion or we say 

that f  is submersive if the linear map ( ):x x f xdf T M T N→  

is an epimorphism (i.e., surjective) at each point x. It is called 

an immersion (or an immersive map) if the linear map 

( ):x x f xdf T M T N→  is a monomorphism (i. e., injective) at 

each point. A smooth map :f M N→  that is both injective 

and immersive is called embedding, [3], [4], [8], [10]. 

4. Conclusion 

On a manifold that is sufficiently smooth, various kinds of jet 

bundles can also be considered. The tangent bundle of a 

manifold is the collection of curves in the manifold that is 

equivalent to the relation of first-order contact. Therefore, by 

analogy the k-th order tangent bundle is the collection of curves 

of the relation of k-th order contact. Likewise, the cotangent 

bundle is the bundle of one-jets of functions on the manifold: the 

k-jet bundle is the bundle of their k-jets. These and other 

examples of the general idea of jet bundles play a significant 

role in the study of differential operators on manifolds, [3], [5], 

[10]. 

It is worth noting that every topological manifold in n 

dimensions has a unique differential structure (up to 

diffeomorphism). Thus, the concepts of topological and 

differentiable manifold are only distinct in higher dimensions. It 
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is known that in each higher dimension, there are some 

topological manifolds with no smooth structure, and some with 

multiple non-diffeomorphic structures, [2], [3], [6], [8]. 
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