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Abstract: Three important phenomena of chaos synchronization are considered in this paper, In detailed, complete 

synchronization, anti- synchronization and hybrid synchronization based on the nonlinear active control approach between two 

different (non-identical) 4D hyperchaotic systems, i. e. Modified Pan and Liu are study herein. The Modified hyperchaotic Pan 

system is taken as drive system and hyperchaotic Liu system as response. Stabilization of error dynamics for each phenomenon 

is realized by satisfying two analytical approaches; Lyapunov's second method and linear system theory. Controllers are 

designed by using the relevant variable of drive and response systems. Theoretical analysis and numerical simulations are 

shown to verify the results. 
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1. Introduction 

In the last two decades, extensive studies have been done 

on the properties of nonlinear dynamical systems. One of the 

most important properties of nonlinear dynamical systems is 

that of chaos [1]. As a very interesting nonlinear 

phenomenon, chaos has been intensively investigated with 

the mathematics, engineering, science, and secure 

communication [2]. This phenomenon was firstly discovered 

by American meteorologist Edward N. Lorenz (1917-2008) 

when he studied a model of the Earth's atmospheric 

convection in 1963 [3-6].  

Chaos control is one of the chaos phenomena, which 

contains two aspects, namely, chaos control and chaos 

synchronization. Chaos control and chaos synchronization 

were once believed to be impossible until the 1990s when Ott 

et al. developed the OGY method to suppress chaos, Pecora 

and Carroll introduced a method to synchronize two identical 

chaotic systems with different initial conditions [7-10], which 

opens the way for chaotic systems synchronization and a 

various techniques such as adaptive control, active control, 

nonlinear control, sliding mod control, back-stepping design 

method and so on have been successfully applied to chaos 

control and synchronization [11-13].  

Chaos control and chaos synchronization play very 

important role in the study of nonlinear dynamical systems 

and have great significance in the application of chaos [14]. 

Especially, the subject of chaos synchronization has received 

considerable attention due to its potential applications in 

physics, secure communication, chemical reactor, biological 

networks, control theory, artificial neural network. etc. [15].  

Various types of synchronization phenomena have been 

presented such as complete synchronization (CS), 

generalized synchronization (GS), lag synchronization, anti- 

synchronization (AS), projective synchronization (PS), 

generalized projective synchronization (GPS) [16]. The most 

familiar synchronization phenomena are complete 

synchronization and anti- synchronized [17, 18]. 

Complete synchronization is characterized by the equality 

of state variables evolving in the time, while anti- 

synchronization is characterized by the disappearance of 

sum of relevant variables evolving in the time. Projective 
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synchronization is characterized by the fact that the drive 

and response systems could be synchronized up to a 

scaling factor, whereas in generalized projective 

synchronization, the responses of the synchronized 

dynamical states synchronize up to a constant scaling 

matrix 	� . It is easy to see that the complete 

synchronization and anti- synchronization are special 

cases of generalized projective synchronization where the 

scaling matrix � � � and � �� respectively [19].  

In the hybrid synchronization scheme, one part of the 

system is synchronized and the other part is anti- 

synchronized so that the complete synchronization and 

anti- synchronization coexist in the system [20]. 

In this paper, we discuss some important phenomena for 

chaos synchronization i.e. complete synchronization, anti- 

synchronization and hybrid synchronization between two 

different 4D hyperchaotic systems via nonlinear active 

control, The results derived in this paper are established 

using the Lyapunov's second method and linear system 

theory.  

2. Description of Hyperchaotic Modified 

Pan and Liu Systems 

According to the Ref [21], the modified hyperchaotic Pan 

system which described by the following dynamical system  

�	 ��	 � 
��� � �	
	��� � ��	 � �	�� � ����� � �	�� � ���	��� � �	���	                     (1) 

where �	, ��, ��, ��  are the state variables and 
, �, �, � � 0 

are the parameters of the system. When parameters 
 �10, � � 8 3⁄ , � � 28	 and � � 10, system (1) is hyperchaotic 

and has two positive Lyapunov exponents, i.e. ��	 �0.24784, ��� � 0.08194,  and has only one equilibrium "�0,0,0,0
 . This equilibrium is an unstable under these 

parameters.  

In 2006, Wang et al. [22], presented the four-dimensional 

hyperchaotic Liu system which described by  

#$
%	 ��	 � 
��� � �	
	��� � &�	 � '�	�� � ����� � (�	� � )��	��� � �	*�		                   (2) 

where a, r, k, h, p, q � 0  are system parameters. When 

parameters a � 10, p � 2.5, r � 40, q � 10.6, k � 1  and h � 4, system (2) is hyperchaotic and has only equilibrium O�0,0,0,0
, and the equilibrium is an unstable saddle node 

under these parameters. Figure 1 and Figure 2 shows the 

attractors of the system (1) and the system (2) respectively.  

 

Fig. 1. The attractor of system (1) in x-y-z space. 

 

Fig. 2. The attractor of system (2) in x-y-z space. 

3. Complete Synchronization Between 

Modified Pan and Liu Systems 

In this section, the synchronization behavior between two 

different hyperchaotic systems is achieved via nonlinear 

active control strategy. In order to observe synchronization 

between hyperchaotic Modified Pan system and hyperchaotic 

Liu system, we consider the system (1) as the drive system 

and hyperchaotic Liu system as the response system which 

describe by the following system  

#$
%	 4�	 � 
�4� � 4	
 � 5		4�� � &4	 � '4	4� � 4� � 5�4�� � (4	� � )4� � 5�	4�� � �	*4	 � 5�	                (3)  

where 5 � 65	, 5�, 5�, 5�78 is the controller to be designed. 

The synchronization error 9:;� is defined as: 9< � 4< � �<�< 	; 	> � 1,2,3,4, ∀�< � 1            (4) 

where �<  is a scaling factor taken the value 1 for 

synchronization and -1 for anti-synchronization according to 

the projective synchronization approach. So, subtracting the 

above system from the system (1), we get the error 

dynamical system between the drive system and the response 

system which is given by: 
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#$
%	 9�	 � 
�9� � 9	
 � 5		9�� � &9	 � 9� � �& � �
�	 � '4	4� � �	�� � 5�9�� � �)9� � �� � )
�� � (4	� � �	�� � 5�	9�� � �	*9	 � �9� � *�	 � �4� � 5�	    (5) 

We need to find the nonlinear active control law for 5<	, ∀> 
in such a manner that the error dynamics of (5) is globally 

asymptotically stable. 

Choosing the control functions 5 � 65	, 5�, 5�, 5�78 as  

� 	5	 � @		5� � �� � &
�	 � '4	4� � �	�� �	@�		5� � �) � �
�� � (4	� � �	�� �	@�	5� � 	*�	 � �4� 	� 	@�	             (6) 

Substituting Eq.(6) in Eq.(5) gives 

�	 9�	 � 
�9� � 9	
 � @		9�� � &9	 � 9� � @�	9�� � �)9� � @�	9�� � �	*9	 � �9� � @�	                        (7) 

Where 	@ � 6@	, @�, @�, @�78  are the linear control inputs 

chosen such that the system (7) becomes stable. 

Let us consider 6@	, @�, @�, @�78 � A69	, 9�, 9�, 9�78                  (8) 

where	A is a 4 B 4 constant matrix. In order to make above 

system stable, the matrix	A should be selected in such a way 

that all of its eigenvalues with negative real parts. Consider 

the following choice of matrix A as  

C 0 	�
 	0 	0�& �1 	0 �1	0* 	0� 	00 	0�1D                           (9) 

With this choice, the error system (5) become  

�	9�	 � �
9	9�� � �9�	9�� � �)9�	9�� � �	9�	                                 (10) 

Hence, we arrive at the following results. 

Theorem 1. System (1) will complete synchronize with the 

system (3) if nonlinear active control is chosen as 

� 	5	 � �
9�	5� � �&9	 � 9� �	9� � �� � &
�	 � '4	4� � �	��	5� � �) � �
�� � (4	� � �	��	5� � *9	 � 	�9� �	9� � *�	 � �4�	    (11) 

Proof. Based on the Lyapunov second method, we 

construct a positive definite Lyapunov candidate function as  

E�9
 � 98F9 � 	� 9	� � 	� 9�� � 	� 9�� � 	� 9��               (12) 

where F � �>
G61,1,1,17 , The derivative of the Lyapunov 

function E�9
 with respect to time is  E� �9
 � 9	9�	 � 9�9���9�9�� � 9�9�� 

 � 9	��
9	
 � 9���9�
�9���)9�
 � 9���	9�
	E� �9
 ��
9	��9���)9�� � 9�� �	�98H9             (13) 

Where 

H � I
 0 	0 00 1 	0 000 	00 	)0 01J 
According to Ref [21], every diagonal matrix with positive 

diagonal elements are positive definite. So H � 0 . 

Therefore, 	E� �9
  is negative definite. And according to the 

Lyapunov asymptotical stability theory, the nonlinear active 

controller is achieved and the synchronization of the 

hyperchaotic systems is achieved. The proof is now 

complete. 

Numerically, we justified these analytical results by 

MATLAB program and take the initial values of the drive 

system and the response system are �10,15,20,30
  and ��10,�5,0,5
 respectively. Figure 3 and Figure 4 show the 

synchronization between systems with nonlinear active 

control (11) 

 

Fig. 3. Synchronization between systems (1) and (3) with nonlinear active 

control (11). 

 

Fig. 4. The converges of system (5) with controllers (11). 
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Remark 1. Controller (11) is constructing from combine 

the linear control inputs v in Eq. 9 with Eq. 6. 

Remark 2. We can proof Theorem 1 by a second method 

where the linear system (10) can be written as 

C9�	9��9��9��D � I�
 	0 	0 	0	0 �1 		0 	0	00 		0	0 	�)	0 	0�1J C
9	9�9�9�D                (14) 

Then the eigenvalues are K		 � �
, 	K�,� � �1, K� � �). 
So, all roots with negative real parts. Hence, in light of the 

linear system theory, the error dynamical system (5) is 

asymptotically stable with the controller (11). Consequently, 

the synchronization of the drive system (1) and the response 

system (3) is achieved. So, nonlinear active control based on 

two analytical methods; Lyapunov second method and the 

linear system theory as a main tool. 

4. Anti-Synchronization Between 

Modified Pan and Liu Systems 

In this section, we discuss anti-synchronization behavior of 

non-identical Modified hyperchaotic Pan system and 

hyperchaotic Liu system. Consider Modified hyperchaotic 

Pan as drive system and hyperchaotic Liu system as a 

response system (system3). We define the error states for 

anti- synchronization as  9< � 4< � �<�< 	; 	> � 1,2,3,4, ∀�< � �1       (15) 

The corresponding error dynamics system obtained by 

adding Eq. 1 and Eq.3 is  

#$
%	 9�	 � 
�9� � 9	
 � 5		9�� � &9	 � 9� � �� � &
�	 � '4	4� � �	�� � 5�9�� � �)9� � �) � �
�� � (4	� � �	�� � 5�	9�� � �	*9	 � �9� � *�	 � �4� � 5�	     (16) 

Theorem 2. System (1) will anti-synchronize with system 

(3) if nonlinear active control is chosen as 

#$
% 	5	 � �
 � 1
9	 � 
9�	5� � �&9	 � 9� �	9� � �& � �
�	 � '4	4� � �	��	5� � �) � 1
9� � �� � )
�� � (4	� � �	��	5� � *9	 � 	�9� �	9� � *�	 � �4�	    (17) 

Proof. Substituting the controllers (17) in the error 

dynamical system (16) we have  

C9�	9��9��9��D � I�1 	0 	0 	0	0 �1 		0 	0	00 		0	0 	�1	0 	0�1J C
9	9�9�9�D             (18)  

According to the previous discussion, there are two 

method.  

In Lyapunov second method, consider the Lyapunov 

function as  

E�9
 � 12 9	� � 12 9�� � 12 9�� � 12 9�� 

The derivative of the Lyapunov function E�9
 with respect 

to time is  E� �9
 � 9	9�	 � 9�9���9�9�� � 9�9�� � 9	��9	
 � 9���9�
�9���9�
 � 9���	9�
	E� �9
� �9	��9���9�� � 9�� �	�98H9 

where H � �>
G61,1,1,17 . So, H  is appositive definite and E� �9
 is negative definite. The proof is now complete based 

on Lyapunov method. In the linear system theory, the 

characteristic values of the matrix of the system (18) has all 

roots with negative real part K	,�,�,�	 � �1 . Which implies 

that the system (1) anti- synchronize the system (3). The 

proof is complete based on the linear system theory. Figure 5 

and Figure 6 show verify these results numerically.  

 

Fig. 5. Anti-synchronization between systems (1) and (3) with active control 

(17). 

 

Fig. 6. The converges of system (16) with controllers (17). 

5. Hybrid Synchronization Between 

Modified Pan and Liu Systems 

Hybrid synchronization based on the nonlinear active 

control between two different 4D hyperchaotic systems, i.e. 

Modified Pan and Liu systems is consider in this section. 
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Modified hyperchaotic Pan system is taken as drive (system 

1) and hyperchaotic Liu system as response (system 3). 

Control is designed by using the relevant variables of drive 

and response systems. 

The hybrid synchronization error is defined by 

L	9	 � 4	 � �		9� � 4� � ��9� � 4� � ��9� � 4� � ��	                            (19) 

System (19) can be written in a succinct form as 

9< � M	 4< � �< , >N	>	>O	P��4< � �< , >N	>	>O	9@9Q                  (20) 

The error dynamics is easily obtained as 

#$
%	 9�	 � 
�9� � 9	
 � 2
�� � 5		9�� � &9	 � 9� � �& � �
�	 � '4	4� � �	�� � 5�9�� � �)9� � �� � )
�� � (4	� � �	�� � 5�	9�� � �	*9	 � �9� � *�	 � �4� � 5�	    (21) 

i. e. subtracting and adding the system (3) from the system 

(1) respectively. 

Theorem 3. System (1) will hybrid synchronize with the 

system (3) if nonlinear active control is chosen as  

#$
% 	5	 � �
9� 	� 2
��	5� � �&9	 � 9� �	9� � �& � �
�	 � '4	4� � �	��	5� � �) � 1
9� � �) � �
�� � (4	� � �	��	5� � *9	 � 	�9� �	9� � *�	 � �4�	    (22) 

Proof. Rewrite system (21) with control (22) as follows 

�	9�	 � �
9	9�� � �9�	9�� � �9�		9�� � �	9�	                                    (23) 

It is clear that all roots with negative real part K		 ��
, K�,�,� � �1 , which implies that the system (1) hybrid 

synchronize the system(3) based on the linear system theory 

under controller (22). Figure 7 and Figure 8 show verify 

these results numerically.  

 

Fig. 7. Hybrid synchronization between systems (1) and (3) with active 

control (22). 

 

Fig. 8. The converges of system (21) with controllers (22). 

6. Conclusions 

In this paper deals with chaos synchronization between 

two non-identical hypechaotic systems through nonlinear 

active control technique. And succeed to achieve three 

important subjects which include complete synchronization, 

anti- synchronization and hybrid synchronization based on 

Lyapunov's second method and linear system theory. 

Numerical simulations are used to verify the effectiveness of 

the proposed control.  

We believe that the results of this research work should be 

beneficial and could be employed to increase contribution to 

the scientific literature on the methods of chaos 

synchronization which may have applications in different 

fields of engineering including secure communication, hybrid 

image encryption, genetic networks.  
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