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Abstract: In this paper, a minimum time problem for n xn co-operative hyperbolic systems involving Laplace operator and
with time-delay is considered. First, the existence of a unique solution of such hyperbolic system with time-delay is proved.
Then necessary conditions of a minimum time control are derived in the form of maximum principle. Finally the bang-bang

principle and the approximate controllability conditions are investigated.
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1. Introduction

The most widely studies of the problems in the
mathematical theory of control are the “time optimal”
problems. The simple version is that steering the initial state

¥, in a Hilbert space H to hitting a target set K [1 H
in minimum time , with control subject to constraints
(uJU U H ). In this paper we will focus our attention on

some special aspects of minimum time problems for
co-operative hyperbolic systems with time delay. In order to
explain the results we have in mind, it is convenient to

consider the abstract form: Let V' and H be two real
Hilbert spaces such that 7 is a dense subspace of
H Identifying the dual of A with H we may consider

VOHOV'" . Let A(t) (tJ0,7] ) be a family of
continuous operators associated with a bilinear forms
7U(t;.,.) defined on V' XV which are symmetric and

coercive on V. Then ,from Lions [1] and Lions - Magenes
[2]and for B be a bounded linear operator from a Hilbert

space U to L*(0,T;H) , the following abstract
systems:

2

%;ﬂ0+mﬂﬂﬂ=BMO,meTL

y(0) =y, » UV, (1)
y(©0)=y», »OH.
have a unique weak solution )V  such that

(»,»)OC(([0,T];V X H). We shall denote by y(t;u)

the unique solution of the equation (1) corresponding to the
control u. The time optimal control problem we shall concern
reads:

Min{r: y(r;u) UK, uJU} )

where K is a given subset of FH, which is called the
target set of the Problem (2). A control u® s called a time
optimal control if #° [JU and if there exists a number

r°>0 suchthat p(7°;u’)0K and
r’ =min{r: y(r;u) 0K, u 00U} 3)

We call the number 7° as the optimal time for the time
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optimal control Problem (3).
Three questions (problems) arise naturally in connection
with this problem

and T>0

W(T;u)JK? ( this is an approximate controllability

problem).
(b) Assume that the answer to (a) is in the affirmative, does

(a) Does there exist a control U, such that

there exist a control #’ which steering p(7°;u’) to
hitting a target set K in minimum time?

(c) If u®  exists,is it unique? what additional properties
does it have?

In practical applications, the behavior of many dynamical
systems which describes a state of time-optimal control
problems depends wupon their past histories. This
phenomenon can be induced by the presence of time delays.
Due to the inherent difficulties in solving control problems
with time delays, the progress in this area has been slow.
Here, we mention the work of Wang [4], where the time
optimal control for a class of ordinary differential-difference
equation with time lag was considered. Also, we mention the
work of Knowles [5], where a Time optimal control of
parabolic systems with boundary condition involving time
delays was considered and it is shown that the optimal
control is characterized in terms of an adjoint system and it is
of the bang-bang type.

Time-optimal control of distributed parameter systems
governed by a system of hyperbolic equations is of special
importance for the active control of structural systems for
which the equations of motion are generally expressed by
hyperbolic differential equations. A typical application of a
hyperbolic equation is the vibrating system.Time-optimal
control of distributed parameter systems governed by a
system of hyperbolic equations have been studied in many
papers, we mention only [6], [7] in which time optimal
distributed control problems of vibrating systems has been
studied. In our papers [8-11], the results in [6] and [7] have
been extended to the time optimal control problems for
systems governed by 7Xn hyperbolic systems, involving
laplace operator with different cases of observations.

In this paper, we will consider a time-optimal control
problem for the following #7nXn co-operative linear
hyperbolic system with time delay /# and involving
Laplace operator (here and everywhere below the vectors are
denoted by bold letters.):

(:t); )~ AQD)y), =d yxt—h)+u(xr)  inQ407T,

Y x)=@x.1) inQ{-A0],

Y (x0)=y, (%) inQ) 4)
2 00,0 inQ

(x6H)=0, on2=IX]-h1[
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where @,),,,);, are given functions, Q [] RY is a
bounded open domain with smooth boundary [ and
A(t) ¢ tUJ0,T] ) are a family of 7X7 continuous
matrix operators,

A+a, ap a, B2
a, A+a, a,, Y2

Ay =| . . :
anl anZ A + an yn

with  co-operative  coefficient  functions di,a[,ai/

satisfying the following conditions:

.. T
d,,a;,a; arepositivefunctionsin L” (Q),

a; = a;(symmetryconditions), (5)
a,(x,t) < \Ja,(x,0)a;(x,1).

This problem is, steering the initial vector state Y(0) for

system (4), with a  vector control function

u = (u,,u,,...,u,) belonging to a given control set U
so that an observation y(Z) hitting a given target set K;
in minimum time,
— 2 .
U:=p=(2.9.- UL Q) 14
K =z=(2,2--2) Q) {7

<&
2 }

(6)
_Zid ||L2(Q)S£} B

and £,E>0 and z, 0L’ (Q) are given.

First, we establish the well posedness of the system (4)
under conditions on the coefficients stated by the principal
eigenvalue of the Laplace eigenvalue problem. Then, we
formulate a time optimal control problem and we derive the
necessary and sufficient conditions which the optimal control
must satisfy in terms of the adjoint.

2. Solutions of nxn Co-operative
Hyperbolic Systems

Let H}(Q), be the usual Sobolev space of order one

which consists of all @[] LZ(Q) whose distributional

0
derivatives 6_¢DL2 (Q) and ¢ =0 with the scalar
X,

1

product norm

<»¢>

Hy©

+<[j;,[j¢>2 ,

Q)

=<,¢>,

Q)
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> 0
where U = Z—
o1 0x;
We have the following dense embedding chain [13]
(H,y(Q))" O(L(Q))" O (H,;(Q)".

where H'(Q) is the dual of H;(Q).
For — y=()i, ¢= (@)L O(H(Q)" and

¢t )0, 7T , let us define a family of continues bilinear forms

Ta(t;.,.): (o (Q)" % (H,(Q))" - O by

= [ [0 XO)- a0 gk

Ly, 9)

n

- ZZJ.Q% (x,0)y,;@dx

i>j

=Y [ lan)-a@orlaa o

- ZZJ.Q% (x,0)y,;@dx

i>j

=Y <), 0>

@)

Lemma 1 If Q is a regular bounded domain in R"

with boundary [, and if M is positive on Q and

smooth enough ( in particular m[JL"(Q), ) then the

eigenvalue problem:
in Q,
onl

possesses an infinite sequence of positive eigenvalues:

0<A(m)<A,(m)<.. A (m)..,;

—Ay = Am(x)y
y=0

Ak (m) — 00, ask — oo,

Moreover A (m) is simple, its associate eigenfunction

e, ispositive,and A, (m) is characterized by:

m

Al(m).[gmyzdx < .[Q|Dy|2dx ®)

Proof. See[14].
Now, let
Ala)zn, i=1.2,...,n )

Lemma 2 If (5) and (9) hold then, the bilinear form (7)
satisfy the Garding inequality

2¢ ||y||2 Cys¢, >0

[y

ey, y) te vl

(o)
Proof. In fact

= anfghﬂyf ~ateanths

i=1

mLy,y)

n

- ZJ ay(x t)ylyjdx

i,j=1

> ZJQhDyJZ —a,(x, t)yiz]a’x
—22”:_[91/ai(x,t)aj(x,t) \ydx

i>j

By Cauchy Schwarz inequality and (8),we obtain

jY,Y) 2 | 1- Uy,| d.
Ty, y) 2 Z( A()Jfly

i=1

Ulmyz-rdxmay,rd;
] Z(A;?()JHJIJDMIZ@

i=1

From (9) we have
My, y) = a{z J.Q|Dyi|2dx} a>0
i=1

Add Iyl

(2 @)" to two sides, then we have the result.
For simplicity, We introduce the following notations: for
j=01,..., let I'=[(j=Dh,j, O =QxI’
and

n a¢ n
Q@O L(1;(Hy(Q)"), —OL(I(L(Q)"),
- ot
W)= ¥p
o OL(15(Hy ' (Q)")
For optimal control problems it is of importance to consider
the cases where the control u; belongs to L*(Q). For
these cases, we have the following results:
Theorem 1 Let (5), (9) be hold and let V;,,V; @ U,

be given with

Yo OH'(Q), 3, 0L(Q),@0W(I"),u,0L(Q)
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Then there exist a unique solution yUIW(0,7)

satisfying the  Dirichlet problem (4). Moreover

y.(, jR)OH)(Q) and %(., JROL(Q)  for

j=12,.. and i=12,...n
The above theorem can be established by first solving the

problem on Q1 then, the existence of a unique solution on
Q2 is established by using the solution on Q1 to
generate the initial data at ¢ = /i . This advancing process is
repeated for QS,Q4,. .. etc until the procedure covers the
whole cylinder (). Hereafter, the solution on Qj will be
denoted by y’ j=1,2,.... Now, the existence of a

yj DW(IJ) 0 (L2 (Q))" can be
established by making use of results of Lions [1] (Theorem
1.1 chapter4 )specialized to the case of V = (H(Q))",

H=(L*(Q))" and an initial data at #=(j—1)h 1In

order to apply the same results of Lions to any Qj , we

unique  solution

must verify that the right hand sides of (4)on Qj , satisfy

the same conditions as required for J,,Y;; and u; this
means, we must verify that

j- ; 1 ayi‘j—l . 2
Y (J —DOH,(Q), Py (x,(j =~DMUL(Q)

This can be shown by making use of [1] (Remark.1.3
Chapter 4 ).

3. Co-operative Hyperbolic Systems

We will denote by y(Z;u) to the unique solution of (4),
attime ! corresponding to a given control u U g and a
given functions Y, ,,V;; @U; satistying the hypothesis of

Theorem 1. Occasionally, we write Yy(X,7;u) when the

explicit dependence on X is required.
In this section, we consider the following first
time-optimal control problem with control V acts in velocity

initial condition and position observation y(x, tv):
(TOP): min{t:y(x,t;u)0K;,ulU;},

In order for the problem (TOP) to be well posed, we
assume the following

There exista 7 U]0,7]and wU, with

y(r;u) 0K (10)

Set
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) =inf{r:y(r;v) 0K foresomevOU!}. (11)

The following result holds .
Theorem 2 If (5), (9) are hold, then there exist an

admissible control u’ to the problem (TOP), which
steering y(t;uo) to hitting a target set K in minimum

time T° (defined by (11) ). Moreover

ijo(yi(ro?“o) ‘Zu)(yf(fo;“) —y,-(TO;uo))dx >0

OulU;

(12)

m 0

Proof. Fixe X, we can choose 7" — T  and

admissible controls {u"”} such that

y(r"u"OK,, m=12,...

Set y” =y(u"). Since U] is bounded, we may

verify that y"” ( respectively d_y Jranges in a bounded
t

set in (respectively

(L (0,75 (Hy(Q))"))
(L(0,T5(L*(Q))") = (L (Q)") -

We may then extract a subsequence, again denoted by
{u”,y"} such that

u” > u’

weaklyin(Z*(Q))", «"QU!,
i (13)

y" -y weaklyinZ’|0,7; (Hé(Q))"

B weaklyin(12(Q))’

We deduce from the equality

d2 m . .
S =AWy
that
YAV oy inL2(0 T; (H'I(Q))”)
dr’ dr’ e
and
dy
y(0)=y, Z(O)Zyl-
But
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— z.m : um _ Z.O; um
Y@ -yt YT
+y(r";u") - y(r";u’)

then, from (13) we have

y(r%5u") - y(r%;u’)  weaklyin(H,(Q))" (14)
and
ly(z";u™)=y(r°;u™)|

(2o

m

™ d
—vy(t;u™)dt
o —y@um)

2 n
(L (Q)) (15)
2 2

dt

(20)

m

m_Or
N7 |,

<c1,-T°

Combine(14) and (15)show that

d
—vy(t;u")dt
= y(t;u™)

v ") —y(r%u®) = 0 weaklyin(22(Q)). (16)
Similarly, we can verify that
y'("u™)-y'(t%u’) - 0 weaklyin(Ho'l(Q))n. (17)

and so, y(r’;u’)0K! as K! is closed and convex,
hence weakly closed. This shows that K; is reached in

time 7° by admissible control u’

For the second part of the theorem, really, from Theorem 1,
t - ytu) t - y'(tu)
[0,7] - (Hy(Q))" [0,7] - (L*(Q))"
respectively are continuous for each fixed W and so
y(TO;u)DintK;, for any wlU, by minimality of

the mapping and from

and

TO

Using Theorem 1 it is easy to verify that the mapping
u oy L fom (I(Q) - (F(Q) . s
continuous and linear. then, the set

A(T") = {y(z";u)ubU;}

is the image under a linear mapping of a convex set hence
A(7°) is convex. Thus we have A(T°)n intK! =[]

and y(r°;u’)00K! (boundary of K! ) . Since
intK} #0(from(10)) so there exists a closed
hyperplane separating A(TO) and K, containing

y(7%;u’) ,iethereisanonzero g[(L*(Q))" suchas

sup <g,y(7%u)> <g,y(r’;u’)>

) LS
L7 (Q
o) (@)

. (18)
< inf <gy(7;u)>

2 n
(L7 (Q))
yDK;

(2 @)"

From the second inequality in (18), 8 must support the

set KI at y(r%;u’) ie

<g,(y@;w-y@'u’)> , 20 OulU;

(2"

and since (L*(Q))”" is a Hilbert space, & must be of the
form

g=A(y(t";u’)-z,) forsomeA>0.

Dividing the inequality (18) by A gives the desired
result.
The above condition (12) can be simplified by introducing

the following adjoint equation. For each u’ gu; , we

define p(x,t; uo) as the solution of the following system

% () - (4@p(u’)

_ {pi(x,t +hu), inQx]0,7° — A

0 inQx)r’-h,7°[
p(x,7u")=0 inQ,
%(XJO;UOF—(yi(x,T°;u°)—zid) inQ,
p.(x,t;u’)=0 inlx]0,7°[.

(19)

For simplicity, we introduce the following notations:
I:OZ[TO_jhaTO_(j_l)h[a Q:ozgx[:o- We
observe that for given z,; and #;, Problem (19) can be

0

solved backward in time starting from f=7" by first

.. . 1 .
obtaining the solution p = p1 on Qro i.e we solve

2 1
=Lt (a@ph), =0 inQ),
in Q,

) ) (20)
T ) =G T")=z,) inQ,

p(x,)=0 on]0,7°[xT.

Having found p1 we may proceed to solve the problem
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on Qrzo backward in time starting with terminal data at
t=1"=h: iewesolve

azp_z 2 . 2
1 + =
SaHAOPY), =0 inQy
pl(x,7°=h;u’)=0 inQ,

> | 21)

%(x,ro;u°)=%(x,ro—h;u) in Q,
1 _ 0

p;(x,6)=0 on]0,7 [xI.

Note that the right-hand sides of (21) are completely
determined once pl is Known. This backward process is
repeated until the procedure covers the whole cylinder Q.
For ul(L*(Q))", the existence of a unique solution

1 1
p' OW (1) pi (T OH'(Q),

(with and

1
%(,,TO)D LZ(Q), ) can be established by applying
t

Theorem 1 to (21) with obvious change of variables and with
reversed sense of time ¢’ =7" —¢. In the same way, the

result can be extended to Qj ,J =2,3,... Thus, we have

the result:
Lemma 3 Let the hypothesists of Theorem.1 be satisfied.

Then, for given z, in [*(Q) and any u,0L1*(Q),

there exists a unique solution p(z,u)dW(0,7°) to

Problem (19).
Now, in view of Lemma.3, we can proceed to simplify
Inequality (12) using the adjoint System (19). Multiply the

first equation in (19) by yi(u)—yi(uo) and integrate
over ]0,7°[XQ we option the identity:
[ 050" =2,)(0, (@ 5w) =y, (750 Y =
,0 62 0 0
-, Jn{p,»o)[atz(y,(u)—y,(u N+ -y ))),-dedr (22)
1 P+ @), ) =y, (@) dxar

The first term in the right hand side of (22)can be rewrite
as

I L{p, (r)(% () =y, ") + {4y () - y(u) dedr
(23)

= Ojﬂp,(t)(u —u®)dxd - jo’ojnp, (O, (t = h,w) = y,(t = h,u"))dxd

= [0 [ Py, ~uydxde = [ p,(e+ @)y, () - v, (u"))ddr
Substituting from (23) into (22) we obtain

Minimum Time Problem for nxn Co-operative Hyperbolic Lag Systems

[L () = 2,000 = 3, (50
= Lrojgpi (60" ) (o, —u})dxdt

Hence (12) is equivalent to
n z.0
> jo .[Qpl. (t;u’)w, —u’)dxdt =0 OuOU”. (24)
i=1

We now summarize the foregoing result
Theorem 3 We assume that (5), (9) hold. Then there exist
the adjoint state

pU {p pOL0,77 (Hy(Q)"), ‘3_1; 0 (LZ(Q))”)}

such that the optimal control u’ of problem (TOP) is
characterized by (19), (24) together with (4) (with
u, =ul.°,i =1,2,...,n).

4. Bang-Bang Control and Controllability

The maximum conditions (24) of the optimal control leads
to the following result:

Theorem 4 (Bang-Bang theorem) Let the hypothesists of
Theorem.3 be satisfied. Then the optimal control of (TOP) is

unique and bang -bang, that is |ul.°(x,t) =1 almost

everywhere.
Proof. The proof will follow from Theorem3 if we can

show that p,(x,£)# 0 for almost all (x,¢)Qx]0,7°[ .

We shall show this fact by contradiction. Therefore, we
suppose that

pi(x,t)=0 for (x,t)0E OQx]0,7°[,

E non null. Let us denote by Kk, the largest
nonnegative integer Kk such that °—kh>0

Suppose firstly that £ has non null intersection with
QXJr’ = h,7°[. 1f 1°<h, the same argument applies

to Qx(0,7°). Inthe cylinder Qx]r’—h,r°[, p(u®)
satisfies

62];—’,(2“0) +(A@DPW)), = 0,(6,) DT =, 1]

and so, by ( [?]), p, (uo) must be analytic in the cylinder
QX|r° =h,7°[ . As p,(u’) iszeroin E, it must be

identically zero in ﬁX]Z’0 —h,r°[. From our earlier



Mathematics Letters 2017; 3(1): 1-11 7

. ap, .20 . .
remarks, the mapping ¢ — ——(¢;u’) is continuous from

ot

[0,T] - L*(Q), andso

op.
§<r°;u°>=0=—(y,.(r°;u°>—z,-),

which leads to a contradiction.
We shall now show that the case where
E n Qx]0 r’— k| is non null can be inductively

reduced to the above.

Note that, in the QxX)r’ =2h,1° = h,

cylinder

p,(u’) satisfies

p,( ") (25)

+(A(Op("), = p;(x,1 + hsu’),
(x,)OQX]r’ =2h,1° - h[.
We have just shown that, p, |, (x,7+h;u’) is analytic

for (x,t)0QX]r° =2k, 7° —h[ and so p,(u’) must

be analytic in QX]7° =24, 7° — A,

analytic coefficients [?]. By induction, pi(uo) must be

since (25) have

analytic in each cylinder
QxX|r° —kh,1° = (k = 1)H[,
,and Qx]0,7° -k A[.

k=23,...k,

It p,u"))=0on EnQxX]r’~kh1°~(k=1)h[
k=23,....k,

continuity as before,

for some then by analyticity and

p,@)=0 for (x,0)0QX]r" —kh,°—(k—1)A[. (26)

Substituting (26) in to (25) gives

P20 ap, =0 for

(x,) OQX]r° = (k =1)h,1° = (k = 2) .

So in the cylinder QX]r° —(k=1)h,1° = (k =2)h[ ,

5. Scalar Cases

In this section, we give some special cases.
Case I: Coupled system with time delay

p;(u”) satisfies

p'( 200 | apy, =0,

pi(-,T —(k=1)h;u"))=0;

consequently, by backward uniqueness [12],

p,*)=0, QX|r’—(k—-1)h,1° - (k -2)h[.

We can repeat this argument until p.(7°;u’)=0,

which leads to a contradiction. Since U : is strictly convex,

then the optimal control is unique. This is complete the proof.
With regard to controllability assumption (10), We can
show quit easily that (4) is approximately controllable in
2 n
(L°(0))

in any finite time 7 >0, if and only if,

{y(r;u):ul(L*(Q))"} is dense in (L*(Q)". By the
Hahn-Banach theorem, this will be the case if

[z (ewar=0, z00(Q), @)
for all ul(L*(Q)), implies that

z(x)=0,i=12,...,n
Let pUW(0,7T) be the unique solution of (19) with

p,(x,7)=z,(x), xUQ.

The proof of Theorem 3 showed that
— p— T J—
[ 200w =y W= [ [ p (), ~i))dxdr;
and so, if (27)holds for all w0 (L*(Q))",
Then

” pu.dxdt =

uld(L*(Q))" and p=0in Q. By continuity,
pi(x,T)=2z,(x)=0

for almostall xJQ .

Here, we take the case where # =2, in this case, the time optimal problem therefore is

min{t:y(x,t;u) 0K, u= (u,,u,) DU}



Hussein El-Saify and Mohammed Shehata: Minimum Time Problem for n xn Co-operative Hyperbolic Lag Systems

The state 'y = (),,,) is the solution of the following equations

[i;);l =Dy, =a,,(x,0)y, +a,(x,t)y, + y,(x,t —h) +u,, x0Q, 00,7,

%—Ay2 = a,,(x,0)y, + a,, (x,0)y, + y,(x,t = h) +u), x0Q, ¢00,7°,

Y =q(x,t), y,(x,t)=@(x,1) x0Q, tO-h,0l[,
$1(6,0) = y10(x), - 32(x,0) = p,(x), x0Q,

B0 =,00. L (x0)= 03,0, ‘00,

v, (x,t)=y,(x,t) =0, xOr, ¢00,7°,

With
a;(x,1),i, j = 1,2 arepositivefunctionsin L*(Q),
Ala,))=22, Aay,)=22, a,=a,,
Q.6 0w (1°).
The adjoint p = (p,, p,) is the solution of the following equations
pl(xal-'-h;uo)a ian]()’ TO _h[
0 inQX|r’—h1°[

p,(x,t +h;u’), inQx]0,7° =i
0 inQx]r’—h1°[

02
lel(t;uo) —Dp, = a,,(x,0)p, +a,,(x,0)p, +{
02
?]Zz(t;uo)_Apz =a, (x,0)p, tay,(x,0)p, +{
p(x,7%5u’)=p,(x,7%u")=0 inQ,
0 )
o) =~ (7' -z,) i,
0 .
D ¢ ) <))
PGt = py(eu®) =0 inlx0, 7L
The maximum condition is

0
Io .[Q[pl (an;”O)(“l _“10) + pz(x,O;uO)(ul _ulo) dxdt 20 Uu Dng'

Case II: n=1 with time delay

Here, we take the case where # =1, in this case, the time optimal problem therefore is
min{t: y(x,t;u) 0K}, u=u, OU}}

The state y = y, is the solution of the following equations




Mathematics Letters 2017; 3(1): 1-11

2

%{—Ay=a1(x,z>y+y<x,r—h)+u°, +0Q, (00,7,

y(x, ) =@x, 1), x0Q, ¢0O]-h,0[,
0

7(3,0) = 3, (%), a—f(x,m =3, (0), x0Q,

y(x,t)=0, x0T, tD]O,TO[,

with

a,(x,t),ispositivefunctionin L* (Q),
Ala) =1, @OW ).

The adjoint p = p, is the solution of the following equations

’p . o p(x.t+hu’), inQx]0,7° [
— (u)—Op=a(xt)p+

atz( )—Bp=a,(x,t)p 0 inQXIr" - b1
p(x,7%u’)=0 inQ,

L (615 = =05 7u") =2,) inQ

pl(x,t;u0)=0 inx]0, 7°[.

The maximum condition is

0

-[0 Ig[p(an;MO)(u _uo)]dxdt >0 OuOUL.

Case IlI: n=1 without delay
Here, we take the case where 7 =1, without time delay (see [1], [7]) in this case:

The state y = y, is the solution of the following equations

%y

3 —Ay=a1(x,t)y+u°, x0Q, ¢00,7°
0

2(x,0) = 2, (%), a—ﬁ(x,0)=yl(x), x0Q,

y(x,t)=0, xOr, ¢00,7°,

with

a,(x,t),ispositivefunctionin L* (Q),
A(a)=1.

The adjoint p = p, is the solution of the following equations

(Zf(f;uo)—Ap=al(x,t)p x0Q, (00,7,
px,7%u’)=0 x0Q,
ZI;(X’TO;uOF—(y(x,TO;u")-zd) x0Q,
pi(x,t;u’)=0 xOr, ¢00,7°[.

The maximum condition is
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LTOJQ[P(%O;uO)(u - u")]dxdt >0 Ou0OU.L.

6. Comments

* We note that, in this paper, we have chosen to treat a
special systems involving Laplace operator, just for
simplicity. Most of the results we described in this
paper apply, without any change on the results, to
more general parabolic systems involving the
following second order operator :

o +Zn:b (x )i+b (x,.)
Ox,0x; ‘3 7 Ox; o

J

L(x,)= zn:bl.j (x,.)

i,j=1

with sufficiently smooth coefficients (in particular,

b..b bo DLOO(Q),bj,bO >0 ) and under the

§27
Legendre-Hadamard ellipticity condition

dnn,zodn, Oxn0o,
i=1

i,j=1

forall /,L100 and some constant 0> 0.

In this case, we replace the first eigenvalue of the
Laplace operator by the first eigenvalue of the operator
L (see[9]).

* In this paper, we have chosen to treat a co-operative
hyperbolic systems with Dirichlet boundary onditions.The
results can be extended to the case of 7 X1 co-operative
hyperbolic system with Neumann boundary conditions: If
we take H'(Q) instead of H}(Q), we have to replace

the Dirichlet boundary conditions ¥, =0,p, =0 on the

boundary by  Neumann  boundary  conditions
oy, op,

i _ 0,ﬁ =(0 where V isthe outward normal.

ov ov

« In this paper, we have taken a simple target set K g .
In (TOP) (for example), if we take

n n ul aZi
Ki =20 @) 2= 2 g g * 25~ ] S )
Jj=1 j

then the necessary optimality conditions coincide with
(19),24), @ (with v, =v,i=12 ) and

(y.(x,1);v")=z,) in (19) is replaced by
(=D, +1)(y,(x,7);v’)—z,). Also, we can take

another observation (see [7]).

* The results in this paper, carry over to the optimal
control problems with fixed -time ( [1] chapter 4 ), for
example, he results of (TOP) carry over to the fixed -time
problem

minirnizeZ:jQ | v,(x,T;u)—z,(x) | dx, T fixed,
i=1

subject to (4) [ except in the trivial case where
z,(x)=».(x,T;v) for some admissible control

v =(v,)7,.] This can proven in an analogous manner, as

the necessary and sufficient conditions for optimality for
this problem coincide with (19), (24) and (4) (with

0 s
v,=v,i=12,.,n).

* As a final coment, we note that the control problem for
the second order evolution system (4) can be reduced to a
similar control problem first order system; in the usual

y

way: set (= @ and rewrite (4) in the first order

ot

form. However, the existing results on the time-optimal
problem ([1], [10], [11]) pertain to the case where the
observation is only one case (position-velocity ) but here
we can take different cases.
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