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Abstract: This paper is concerned with a multi-delay three-species predator-prey model with feedback controls and prey 

diffusion. By developing some new analysis techniques and using the comparison principle of differential equations, we 

obtained some new sufficient conditions which ensure the system to be permanent. 
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1. Introduction 

From the biological aspects, it is important to obtain the 

conditions which ensure all species in multi-species 

community are permanent and global attractive. The 

Lotka-Volterra predator-prey model is one of the important 

interactions among species, which is commonly seen in the 

real world. In fact, diffusion often occurs in an ecological 

environment, that is to say, species can diffuse between 

patches. As a prey species which grows in weak environment, 

spread to an advantageous environment is conducive to 

maintaining the permanence and global attractive of the 

species. Therefore, the diffusion term is added to the model to 

describe accurately the interrelationships among species (see, 

[1-6]). 

Song and Chen in [1] studied the following two-species 

predator-prey system with diffusion 

1 1 1 1 1 1 2 1

2 2 2 2 2 2 1 2

1

[ ( ) ( ) ( ) ] ( )( ),

[ ( ) ( ) ] ( )( ),

[ ( ) ( ) ( ) ],

ɺ

ɺ
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x x a t b t x c t y D t x x

x x a t b t x D t x x

y y d t e t x q t y

= − − + −
 = − + −
 = − + −

     (1) 

where 1x  and y  are population density of prey species x  

and predator species y  in patch 1, and 2x  is the density of 

prey species x  in patch 2. Predator species y  is confined to 

patch 1, while the prey species x  can diffuse between two 

patches. ( ),  1,2iD t i =  are diffusive coefficients of prey 

species x . It is proved that the system can be made persistent, 

further, if the system is a periodic system, it can have a strictly 

positive periodic orbit which is globally asymptotically stable 

under the appropriate conditions. 

In 2010, Wei et al in [6] considered the following 

nonautonomous competitive Lotka–Volterra diffusion system 
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ɺ

ɺ

ɺ

ɺ
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= − − + −
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 = − − + −
 = − − + −

   (2) 

They obtained a unique positive periodic solution which is 

globally asymptotically stable of the system under suitable 

conditions by constructing Liapunov function. 

The phenomenon of time delay is common and inevitable 

in nature, a number of models in ecology can be formulated 

as systems of differential equations with time delays. 

Therefore, more realistic models of population interactions 

should take into the effect of time delays. In general, delay 

differential equations exhibit much more complicated 

dynamics than ordinary differential equations since a time 

delay could cause a stable equilibrium to become unstable 
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and cause the population to fluctuate. In [7], the authors 

considered the following three-species Lotka-Volterra type 

competitive- mutualism systems with discrete time delay, 

and some sufficient conditions on the permanence of 

species and the global attractivity of the system are 

established. 
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          (3) 

Moreover, some researchers have been focused on the combined effects of dispersion and time- delays, in 2004, Xu et al [8] 

studied the following Lotka-Volterra predator-prey model with dispersion and time-delays. 
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                    (4) 

where 1( )x t  and ( )y t  denote the densities of species x  and y  in patch 1, 2 ( )x t  denotes the density of species x  in patch 

2. Predator species is confined to patch 1 while the prey species can disperse between two patches. ( ),  1,2iD t i =  are dispersion 

rate of prey species x . 1 2,τ τ  are positive constants.  

In [9], Zhou, Shi and Song considered the following nonautonomous predator-prey model with nonlinear diffusion and 

time-delays. And they obtained some sufficient conditions for the permanence and global stability of the model. More work on 

diffusion and time-delays can be found in (cf, [10-12] and the references cited therein). 
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                  (5) 

On the other hand, in some situation, people may wish to 

change the conditions of the system stability but to keep its 

stability still. This is of significance in the control of 

ecology balance. One of the methods for the realization of it 

is to alter the system structurally by introducing some 

feedback control variables so as to get a population 

stabilizing at another condition. The realization of the 

feedback control mechanism might be implemented by 

means of some biological control scheme or by harvesting 

procedure. In fact, during the last decade, the dynamical 

behavior of species for the various Lotka-Volterra systems 

with feedback controls have been studied in many articles, 

for example, see [13-16] and the references cited therein. 

Many important and interesting research results and 

methods are offered. 

In 2003, K. Gopalsamy et al [13] studied the following two 

species competition system with feedback controls 
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du t
u t a x t

dt

du t
u t a x t

dt

α

α

η

η

 = − − −

 = − − −

 = − +


 = − +


   (6) 

where ,, , , , ( , 1,2)i i j i i ib a a i jα η =  are positive constants, 

( ), 1, 2iu t i =  are the indirect control variables. And they 

obtained some conditions for the existence of a globally 

attracting positive equilibrium of the system. In [16], Chen et 

al proposed the following Lotka-volterra predator-prey system 

with feedback controls 
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α

α

 = − − −

 = − + −

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

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      (7) 

They by constructing two suitable Lyapunov functions, 

sufficient conditions which guarantee the global attractivity of 

the positive equilibrium and boundary equilibrium are 

obtained. They results show that enough large feedback 

controls could lead to the extinction of the predator species. 

Moreover, in recent years, attention has been given to some 

ecosystem models with both feedback control and time delay 

or diffusions (see, [17-20]). In order to show that whether the 

feedback control variables play an essential role on the 

persistent property of Lotka-Volterra cooperative systems or 

not, Xu and Chen in [19] established and studied the following 
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system with time delay and feedback control. 

1 1 1 1 1 11 1 12 2 1 1 1
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                  (8) 

where ( )ix t  denotes the density of i -species cooperative species, is the control variable, 1, 2.i =  ( ), ( ), ( ), ( ),i i i ir t a t b t c t  

( ), ( ), ( 1,2)i ijd t a t i = are all continuous, real-valued functions which are bounded above and below by positive constants.

, , ,  1,2i i iτ σ η =  are positive constants. They obtained some new sufficient conditions which ensure the system to be permanent, 

and show that feedback control variables have no influence on the permanence of the system. 

To eliminate the influence of the patch diffusion and feedback control on existence of periodic solution, Xie and Weng in [20] 

considered the following predator–prey model with patch–diffusion and feedback control 
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where ( ) ( 1, 2)ix t i =  denotes the density of prey species at time t , ( )y t  is the predator species density at time t , 

( ), ( ), ( ), ( ), ( ), ( ) ( 1,2), ( ), ( )i i i i i ib t a t k t D t t t i c t r tη ξ = are continuous, bounded and strictly positive functions on [0, )+∞ . By 

developing some new analysis methods, the existence of at least one positive periodic solution for this model is proved. 

However, to the best of the authors’ knowledge, to this day, still less scholars consider the general nonautonomous 

Lotka-Volterra predator-prey system with time-delays, prey diffusion and feedback controls. Based on system (4) and motivated 

by the above works, in this paper, we propose and investigate the following three-species Lotka-Volterra multi-delay 

predator-prey system with feedback controls and prey diffusions. 
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          (10) 

Due to biological interpretation of system (10), it is reasonable to consider only positive solution of (10), in other words, to 

take admissible initial conditions 

  ( ) ( ),  1,2,3  for [ ,0) and (0) 0,  

( ) ( ),  1,2,3  for 0  and  (0) 0. 

i i i

i i i

x t t i t

u t t i t

φ τ φ
φ ϕ

= = ∈ − >
= = > >

                           (11)

Obviously, the solutions of system (10) with the initial 

values (11) are positive for all 0t ≥ . Where 1( )x t  and 2 ( )x t  

denote the density of prey species in patch 1 and patch 2, 

respectively, 3( )x t is the density of predator species, while the 

prey can diffuse between two patches; ( )( 1,2)ir t i =  denote 

the intrinsic growth rate of the prey species at patch 1 and 

patch 2, 3 ( )r t is the death rate of the predator; 

( )( 1, 2,3)iia t i =  denote the restriction density of the three 

species, respectively. 13( )a t  and 23( )a t  are the capturing 

rate of the predator, 31( )a t  and 32 ( )a t  are the conversion 

rate of nutrients of the predator; ( ) ( 1,2)iD t i =  are the 

dispersion rate of prey species, ( )( 1,2,3)iu t i =  are the 

feedback control terms; furthermore ，)(),( 2313 tata  
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31 32 1 2( ), ( ), ( ), ( )a t a t D t D t , ( ), ( ), ( ), ( ),i ii i ir t a t d t e t  and ( ), ( )
iif t q t , 

( 1, 2,3)i =  are continuous, bounded and strictly positive 

functions on [0, )+∞ , 1 2 3, ,τ τ τ  are positive constants. By 

developing a new analysis technique, the sufficient 

conditions are established for the permanence of the 

predator-prey model in this paper. 

2. Permanence 

For a continuous and bounded function ( )g t  defined on

0[ , )t +∞ , we set 

0 0sup{ ( ) | },   g inf{ ( ) | }.m lg g t t t g t t t= < < +∞ = < < +∞  

Definition 2.1. System (10) is called permanent, if there 

exist positive constants , ( 1,2)i iM m i = , , ( 1, 2,3)i iN n i =  

and T , such that 

1 1 2 3 2( ) ,  ( ) ,  1, 2,

( ) ,  1, 2,3,

i

i i i

m x t M m x t M i

n u t N i

≤ ≤ ≤ ≤ =
≤ ≤ =

 

for any positive solution 1 2 3 1 2( ) ( ( ), ( ), ( ), ( ), ( )Z t x t x t x t u t u t=  

3, ( ))u t  of system (10) as t T> . 

As a direct corollary of Lemma 2.1 of Chen [21], we have 

Lemma 2.1. If 0, 0a b> >  and ɺx b ax≥ − , when 0t ≥  

and (0) 0x > , we have 

lim inf ( ) .
t

x t b a
→+∞

≥  

If 0, 0a b> >  and ɺx b ax≤ − , when 0t ≥  and (0) 0x > , 

we have 

limsup ( ) .
t

x t b a
→+∞

≤  

As a direct corollary of Lemma 2.2 of Chen [21], we have 

Lemma 2.2. If 0, 0a b> >  and ( )ɺx x b ax≥ − , when 

0t ≥  and (0) 0x > , we have 
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t
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Lemma 2.3 (see [22], Lemma 2.2). Assume that for ( ) 0y t > , 

it holds that 

0

( ) ( )( ( ) ,
=

≤ − − +∑ɺ

m
l

l

y t y t y t l Dλ µ τ  
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(0) 0φ > , where 

0

0, 0, 0,1,2, , , 0  and  0,
m

l l

l

l m Dλ µ µ µ
=
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are constants, Then there exist a positive constant yM < +∞  

such that 

*limsup ( ) ( )exp( ) ,
y

t

D D
y t M y mλ τ

λ λ→+∞
≤ = − + + < +∞   (12) 

where 
*y y=  is the unique solution of ( ) 0y y Dλ µ− + = . 

Lemma 2.4 (see [22], Lemma 2.3). Assume that for 

( ) 0y t > , it holds that  

0

( ) ( )[ ( )].
m

l

l

y t y t y t lλ µ τ
=

≥ − −∑ɺ  

If (12) holds, then, there exists a positive constant 0ym >  

such that for 
0

0
m

l

l

µ µ
=

= >∑ , 

lim inf ( ) exp{( ) } 0.y y
t

y t m M m
λ λ µ τ
µ→+∞

≥ = − >  

For system (10), we let 

*1 2
1 2 3 31 32 1 3 3 3

11 22

31 1 1 2 2 1
1 2 3

1 2 3
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1

11 22

31 32 1 3
2 31 32 1 3

33

max{ , },  exp{[( ) ] },

,  ,  ,

min{ , },  
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exp{(( )

m m
m m m

l l
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N N N
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m
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a
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+ −= + − 33 2 3

3 3 21 1 1 2 2 1
1 2 3
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a M
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and 
*

3x  is the unique positive solution of the following 

equation  

3 31 32 1 3 3 33 3( )(( ) ( )) 0.m m m lx t a a M d N a x t+ + − =  

Theorem 2.1. Assume that the system (10) satisfies the 

following conditions 

1 1 13 2 1 1 2 2 23 2 2 2

3 3 31 32 1 4 3 3 2

( ) ,  ( ) ,

( ) ( ) ,  ( ) .

l m m l m m

m l l l m

H r a M d N H r a M d N

H r a a m H e q M

> + > +

< + >
 

then the system (10) is permanent. 

Proof. According to the first and the second equations of 

system (10), we define 1 1 2
( ) max{ ( ), ( )}W t x t x t=  and 

calculate the upper right derivative of 1
( )W t  along the 

positive solution of system (10), we have that 

(P1) If 1 2
( ) ( )x t x t≥ , then 
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1 1 1 1 11 1 13 3 1 1 1 2 1

1 1 11 1 1 1 11 1 1 1 11 1

( ) ( ) ( )[ ( ) ( ) ( ) ( ) ( ) ( ) ( )] ( )[ ( ) ( )]

( )[ ( ) ( ) ( )] ( )[ ( )] ( )[ ( )].m l m l

D W t x t x t r t a t x t a t x t d t u t D t x t x t

x t r t a t x t x t r a x t W t r a W t

+ = = − − − + −

≤ − ≤ − = −
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(P2) If 1 2
( ) ( )x t x t≤ , then 
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From (P1) and (P2), we have 

1 1 1( ) ( )[ ( )],  1,2.m l
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By (13) we can derive 

(A) If 1 1 2 1
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2 1
( )} ,  0x t M t≤ ≥ . 

(B) If 1 1 2 1
(0) max{ (0), (0)}W x x M= > , take appropriate 

0α > , we have the following three possibilities: 

(a) 1 1 1 1 2
(0) (0) ,  ( (0) (0))W x M x x= > > ; 

(b) 1 2 1 1 2
(0) (0) ,  ( (0) (0))W x M x x= > < ; 

(c) 1 1 2 1
(0) (0) (0)W x x M= = > . 

If (a) holds, then there exists 0,  [0, )tε ε> ∈ , we have 

1 1 1
( ) ( )W t x t M= > , then we get that  

1
1 1 11 1 1
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m

l

l

r
D W t x t a W t W t

a
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1 2 1
( ) ( )W t x t M= > , then 

2
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l
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r
D W t x t a W t W t

a
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If (c) holds, similar to (a) and (b), we have  

1 1 1( ) ( ) ( )[ ( )] 0,  1  2.
m

l i
i ii l

ii

r
D W t x t a W t W t i or

a
α+ = ≤ − ≤ − < =ɺ  

From what we have been discussed above, we can conclude 

that if 1 1
(0)W M> , then 1

( )W t  is strictly monotone 

decreasing with speed at least α , so there exists 1
0T >  such 

that if 1
t T≥ , we have 

1 1 2 1
( ) max{ ( ), ( )}W t x t x t M= ≤ . 

That is 

1 2
1 1

11 22

limsup ( ) max{ , }. 
m m

l l
t

r r
x t M

a a→+∞
≤ =         (14) 

1 2
2 1

11 22

limsup ( ) max{ , }.
m m

l l
t

r r
x t M

a a→+∞
≤ =          (15) 

According to the sixth equation of system (10), we obtain 

3 3 3 3 3 3 3 3 3 3 3 3
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ).m lu t e t f t u t q t x t e t f t u t e f u t= − − ≤ − ≤ −ɺ  

And by Lemma 2.1, we have  

3
3 3

3

limsup ( ) .
m

l
t

e
u t N

f→+∞
≤ =                                        (16) 

By the third equation of system (10), we have 

3 3 3 31 1 1 32 2 2 33 3 3 3 3

3 31 1 1 32 2 2 33 3 3 3 3

3 31 32 1 3 3 33 3 3

( ) ( )[ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )]

( )[ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )]

( )[( ) ( ) ( )].m m m

x t x t r t a t x t a t x t a t x t d t u t

x t a t x t a t x t a t x t d t u t

x t a a M d N a t x t

τ τ τ
τ τ τ

τ

= − + − + − − − +
≤ − + − − − +

≤ + + − −

ɺ

 

And from the Lemma 2.3, we derive that  

*

3 2 3 31 32 1 3 3 3limsup ( ) exp{[( ) ] }.m m m

t

x t M x a a M d N τ
→+∞

≤ = + +  (17) 

where 
*

3x  is the unique positive solution of the following 

equation  

3 31 32 1 3 3 33 3( )(( ) ( )) 0.m m m lx t a a M d N a x t+ + − =  

For the fourth and the fifth of system (10), we have 

1 1 1 1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2 2 2 1

( ) ( ) ( ) ( ) ( ) ( ) ( ) ,

( ) ( ) ( ) ( ) ( ) ( ) ( ) .

m l m

m l m

u t e t f t u t q t x t e f u t q M

u t e t f t u t q t x t e f u t q M

= − + ≤ − +

= − + ≤ − +

ɺ

ɺ
 

By Lemma 2.1, we can get  
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1 1 1
1 1

1

limsup ( ) .
m m

l
t

e q M
u t N

f→+∞

+≤ =           (18) 

2 2 1
2 2

2

limsup ( ) .
m m

l
t

e q M
u t N

f→+∞

+≤ =           (19) 

On the other hand, According to the first and the second 

equations of system (10), we define 2 1 2
( ) min{ ( ), ( )}W t x t x t= , 

then calculating the lower right derivative of 2
( )W t  along the 

positive solution of system (10), we have 

(1) If 1 2
( ) ( )x t x t≤ , then  

2 1 1 1 11 1 13 3 1 1 1 2 1

1 1 11 1 13 2 1 1 2 1 13 2 1 1 11 2

( ) ( ) ( )[ ( ) ( ) ( ) ( ) ( ) ( ) ( )] ( )[ ( ) ( )]

( )[ ( ) ] ( )[ ( )].
l m m m l m m m

D W t x t x t r t a t x t a t x t d t u t D t x t x t

x t r a x t a M d N W t r a M d N a W t

+ = = − − − + −

≥ − − − = − − −

ɺ

 

(2) If 1 2
( ) ( )x t x t≥ , then  

2 2 2 2 22 2 23 3 2 2 2 1 2

2 2 22 2 23 2 2 2 2 2 23 2 2 2 22 2

( ) ( ) ( )[ ( ) ( ) ( ) ( ) ( ) ( ) ( )] ( )[ ( ) ( )]

( )[ ( ) ] ( )[ ( )].
l m m m l m m m

D W t x t x t r t a t x t a t x t d t u t D t x t x t

x t r a x t a M d N W t r a M d N a W t

+ = = − − − + −

≥ − − − = − − −

ɺ

 

From (1) and (2), it is easy to obtain 

2 3 2( ) ( )[ ( )],  1,2.l m m m

i i i i i ii iD W t W t r a M d N a W t i+ ≥ − − − =                            (20) 

By (20), we can obtain the following 

(i) if 2 1 2 1
(0) min{ (0), (0)}W x x m= ≥ , then 1 2 1

min{ ( ), ( )} ,  0x t x t m t≥ ≥ . 

(ii) if 2 1 2 1
(0) min{ (0), (0)}W x x m= < , take appropriate 0α > , we have 

(a) 2 1 1 1 2
(0) (0) ,  ( (0) (0))W x m x x= < < ; 

(b) 2 2 1 1 2
(0) (0) ,  ( (0) (0))W x m x x= < > ; 

(c) 2 1 2 1
(0) (0) (0) .W x x m= = <   

If (a) holds, there exists 0ε >  such that if [0, )t ε∈ , we have 2 1 1
( ) ( )W t x t m= < , then 

1 13 2 1 1
2 1 11 2 2

11

( ) ( ) ( )[ ( )] 0.
l m m

m

m

r a M d N
D W t x t a W t W t

a
α+

− −= ≥ − ≥ >ɺ  

If (b) holds, there exists 0ε >  if [0, )t ε∈ , we have 2 2 1
( ) ( )W t x t m= < , then 

2 23 2 2 2
2 2 22 2 2

22

( ) ( ) ( )[ ( )] 0.
l m m

m

m

r a M d N
D W t x t a W t W t

a
α+

− −= ≥ − ≥ >ɺ  

If (c) holds, in the same way, we have 

3 2
2 2 2( ) ( ) ( )[ ( )] 0,  1  2.

l m m
m i i i i

i ii m

ii

r a M d N
D W t x t a W t W t i or

a
α+

− −= ≥ − ≥ > =ɺ  

From (a), (b), (c), we can get that if 2 1
(0)W m< , then 2

( )W t  is strictly monotonously increasing with speed α . Then there 

exists 2
0T >  such that if 2

t T≥ , we have 2 1 2 1
( ) min{ ( ), ( )}W t x t x t m= ≥ . 

That is  

1 13 2 1 1 2 23 2 2 2
1 1

11 22

lim inf ( ) min{ , }.
l m m l m m

m mt

r a M d N r a M d N
x t m

a a→+∞

− − − −≥ =                        (21) 

1 13 2 1 1 2 23 2 2 2
2 1

11 22

lim inf  ( ) min{ , }.
l m m l m m

m mt

r a M d N r a M d N
x t m

a a→+∞

− − − −≥ =                      (22) 

For the third equation of system (10), we have 
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3 3 3 31 1 1 32 2 2 33 3 3 3 3

3 3 31 1 1 32 2 2 33 3 3

3 3 31 1 32 1 33 3 3

( ) ( )[ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )]

( )[ ( ) ( ) ( ) ( ) ( ) ( ) ( )]

( )[ ( )].
m l l m

x t x t r t a t x t a t x t a t x t d t u t

x t r t a t x t a t x t a t x t

x t r a m a m a x t

τ τ τ
τ τ τ

τ

= − + − + − − − +
≥ − + − + − − −

≥ − + + − −

ɺ

 

By Lemma 2.4, we have  

31 32 1 3
3 2 31 32 1 3 33 2 3

33

( )
lim inf ( ) exp{(( ) ) }.

l l m
l l m m

mt

a a m r
x t m a a m r a M

a
τ

→+∞

+ −≥ = + − −                    (23) 

From the fourth and the fifth of system (10), we have 

1 1 1 1 1 1 1 1 1 1 1( ) ( ) ( ) ( ) ( ) ( ) ( ) ,l m lu t e t f t u t q t x t e f u t q m= − + ≥ − +ɺ  

2 2 2 2 2 2 2 2 2 2 1( ) ( ) ( ) ( ) ( ) ( ) ( ) .l m lu t e t f t u t q t x t e f u t q m= − + ≥ − +ɺ  

And by Lemma 2.1, we can get 

1 1 1
1 1

1

lim inf ( ) .
l l

mt

e q m
u t n

f→+∞

+≥ =            (24) 

2 2 1
2 2

2

lim inf ( ) .
l l

mt

e q m
u t n

f→+∞

+≥ =           (25) 

According to the sixth equation of system (10), we have 

3 3 3 3 3 3 3 3 3 3 2( ) ( ) ( ) ( ) ( ) ( ) ( ) .l m mu t e t f t u t q t x t e f u t q M= − − ≥ − −ɺ  

From Lemma 2.1, 

3 3 2
3 3

3

lim inf ( ) .
l m

mt

e q M
u t n

f→+∞

−≥ =          (26) 

From (14)-(19) and (21)-(26), this ends the proof of 

Theorem 2.1. 

3. Conclusion 

This paper presents the use of some new analysis 

techniques and the comparison principle of differential 

equations. This method is a powerful tool for solving 

nonlinear differential equations in mathematical physics, 

chemistry and engineering etc. We have dealt with the 

problem of positive solution for a multi-delay three-species 

predator-prey model with feedback controls and prey 

diffusion. The general sufficient conditions have been 

obtained to ensure the permanence of positive solution for the 

predator-prey model. In particular, the sufficient conditions 

that we obtained are very simple, which provide flexibility for 

the application and analysis of the Lotka-Volterra 

predator-prey system. 
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