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Abstract: The paper is discussed the sensitive and transitive property of a dynamical system with strong specification property. 

It is proved that if a dynamical system is sensitive, then it is syndetically sensitive with the same constant of sensitivity. Further, 

it is given another condition such that if a dynamical system is sensitive, then it is syndetically sensitive with the same constant of 

sensitivity. Meanwhile, it is stated that if a dynamical system has shadowing property, then it is totally syndetically transitive. 
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1. Introduction 

Specification property was first introduced by Bowen to 

give the distribution of periodic points for Axiom A 

diffeomorphisms [1]. In recent years, many scholars focus on 

specification property and its related properties. Lampart [2] 

described some relations between specification property and 

ω-chaos. Kulczycki [3] studied relations between almost 

specification property, asymptotic average shadowing 

property and average shadowing property for compact 

dynamical systems. Wang at. el. [4] shown that an expansive 

system with specification property displays a stronger form of 

ω-chaos. It is proved that there exists a system having almost 

specification property and zero entropy [5]. Kwietniak [6] 

examined relations between specification like properties and 

such notions as: mixing, entropy, the structure of the simplex 

of invariant measures, and various types of the shadowing 

property. Kwietniak at. el. [7] stated that the weak 

specification property neither implies intrinsic ergodicity, nor 

follows from almost specification. It was proved that a self 

homeomorphism on property [8]. 

The paper is organized in the following manner: In Section 

2, it is given preliminaries required for the development of the 

paper. In Section 3, it is proved that if a dynamical system 

( , )X T  is sensitive with strong specification property, then it is 

syndetically sensitive with the same constant of sensitivity. 

Further, it is given another condition such that if ( , )X T  is 

sensitive, then it is syndetically sensitive with the same 

constant of sensitivity. At least, it is shown that if a dynamical 

system has d−shadowing property or d−shadowing property 

with strong specification property, then it is totally 

syndetically transitive. 

2. Basic Definitions 

Let :T X X→  be a continuous map acting on a 

compact metric space ( , )X d . 

A subset S  of +
ℤ  is syndetic if it has a bounded gap, i.e., 

if there is N ∈ℕ such that { }, 1, ,i i i N S+ + ≠ ∅⋯ ∩  for 

every i +∈ℤ ; S  is thick if it contains arbitrarily long runs of 

positive integers, i.e., for every n N∈  there exists some 

n
a +∈ℤ  such that { }, 1, ,n n na a a n S+ + ⊂⋯ . 

Let ( , )X T  be a dynamical system and let d  be an 

admissible metric on X . 

According to the classical definition, T  is sensitive if there 

exists 0δ >  with the property that for any nonempty open set 

U X⊂ , one can find ,y z U⊂  and n N∈  such that 

( ( ), ( ))n nd T y T z δ> . It is written this in a slightly different way. 

For U X⊂  and 0δ > , let 
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( , ) { : ,TN U n there exist y z Uδ = ∈ ∈ℕ  

( ( ), ( )) }n nwith d T y T z δ> . 

It is called that T is syndetically sensitive if there exists 

0δ >  with the property that for every nonempty open set 

U X⊂ , so ( , )TN U δ
 
is syndetic. 

Let X  be a set and  

{ }( , ) |
X

x x x X∆ = ∈ . 

Then X∆  is called the diagonal of X X× . A subset M  

of X X×  is said to be symmetric if TM M= , where 

{ }( , ) | ( , )TM y x x y M= ∈ . 

Definition 2.1. A map T is said to have strong 

specification property if for every symmetric 

neighborhood U of the diagonal X∆ there is a positive 

integer M such that for any finite sequence of points 

1 2, , , kx x x⋯ in X , any integers 

1 1 2 2 k ka b a b a b≤ < ≤ < < ≤⋯  

with 1
(2 )

j j
a b M j k−− ≥ ≤ ≤  and any 

1( )kp M b a> + − ,  

there exists x X∈  such that ( )pT x x=  and 

( , ) , ,1i

j j j
F x x U a i b j k∈ ≤ ≤ ≤ ≤ . 

Let 
0 0ε > . A function  

0: (0, )g ε× →ℕ ℕ 

is called a mistake function if for all 
0(0, )ε ε∈  and all  

, ( , ) ( 1, )n g n g nε ε∈ ≤ +ℕ  

and 

( , )
lim 0

n

g n

n

ε = . 

Given a mistake function g , if 
0 ,ε ε≥ it is defined 

0( , ) ( , )g n g nε ε= . 

Let g
 
be a mistake function and 0ε > . For n ∈ℕ large 

enough such that  

( , )g n ε ε< , 

it is defined  

( ; , ) : { {0,1, , 1}: # ( , )}I g n n n g nε ε= Λ ⊂ − Λ ≥ −⋯ , 

where #Λ  denotes the cardinality of Λ . 

For a finite set of indices 

{0,1, , 1}nΛ ⊂ −⋯ , 

it is defined the Bowen distance of ,x y X∈  along Λ  by 

( , ) : max{ ( , )}j j

j
d x y d T x T yΛ ∈Λ

=  

and the Bowen ball of radius ε  centered at x  by 

( , ) : { : ( , ) }B x y X d x yε εΛ Λ= ∈ < . 

When ( , )g n nε < , it is defined the ( ; , )g n ε  Bowen ball 

centered at x  as 

( ; , ): { : ( , )nB g n y X y B n for someε εΛ= ∈ ∈  
( ; , )

( ; , )} ( , )
I g n

I g n B x
ε

ε εΛ
Λ∈

Λ∈ = ∪ . 

Definition 2.2. The dynamical system ( , )X T  has almost 

specification property with mistake function g , if for any 

1, , 0mε ε >⋯ , there exist integers 
1

( ), , ( )g g mk kε ε⋯
 

such that for any points 
1, , mx x X∈⋯ , and integers  

1 1
( ), , ( )g m g mn k n kε ε≥ ≥⋯ , there exists a point z X∈  

such that 

( ) ( ; , ), 1, , ,j

j

l

n j j
T z B g x j mε∈ = ⋯  

where 
0 0n =  and 

1j

j ss
l n

−=∑ . 

Remark 1. Pfister and Sullivan [9] showed that the strong 

specification property implies the almost specification 

property. 

For any A ⊂ ℕ, the upper density of A  is defined by 

1
( ) : limsup | {0,1, , 1}|

n

d A A n
n→∞

= −∩ ⋯ .       (1) 

Replacing limsup with liminf in (1) gives the definition of 

( )d A , the lower density of A . If there exists a number 

( )d A  such that ( ) ( ) ( )d A d A d A= =  then it is said that the 

set A  has density ( )d A . Fix any [0,1)α ∈  and denote by 

αΜ  (resp. αΜ ) the family consisting of sets A ⊂ ℕ with 

( )d A α>  (resp. ( )d A α> ). It is denoted by αΜ  the family 

of sets with ( )d A α> . Clearly 
1

∧
Μ  consists of sets A with 

( ) 1d A = . 

Definition 2.3. A dynamical system ( , )X T  has (ergodic) F−
shadowing property if, for any 0ε >  there is 0δ >  such 

that every δ−ergodic pseudo-orbit ξ  is F ε− −shadowed by 

some point z X∈ , i.e.  

( , , )z Fξ εΛ ∈ . 

In the special case of 1F
∧

= Μ  (resp., 
0F = Μ

 
and 

1

2M ), 

it is said that ( , )X T  
has the ergodic shadowing property (resp., 
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d−shadowing property and d−shadowing 

property). 

3. Specification Property of Dynamical 

Systems 

A dynamical system ( , )X T  is a minimal system (or T  is a 

minimal map) if the T -orbit of every x X∈  is dense in X . It 

is easy to see that ( , )X T  is a minimal system if ( , )X T has no 

proper, nonempty, closed T -invariant subset. Here, for a 

subsetY , T -invariant means ( )T Y Y⊂ . In a dynamical system 
( , )X T , an element x X∈  is called a minimal point if the 

dynamical system ( )
( ( ), | )

T
T O x

O x T  is minimal. Note that every 

periodic point is a minimal point, and that every minimal point 

is a recurrent point. 

Theorem 3.1. Let T  has strong specification property, if T  

is sensitive, then T  is syndetically sensitive with the same 

constant of sensitivity. 

Lemma 3.2 ([8]). If :T X X→  has strong specification 

property, thenT is Devaney chaotic. 

Proof of Theorem 3.1. By Lemma 3.2 it is easy to see that 

T  is dense of periodic points. Suppose that T  is sensitive 

with constant 0δ > . Let U X⊂  be a nonempty open set. It is 

well known that ( , )
T

k N Uδ∈
 
for som k∈ℕ. Since ( , )X T  

has a 

dense set of minimal points, the product system ( , )X X T T× ×  

also has a dense set of minimal points [10]. Therefore it can be 

chosen ,y z U∈  
such that ( , )y z  

is a minimal point for T T×  

and such that 

( ( ), ( ))k kd T y T z δ> . 

Let ,V W X⊂  be small enough open neighborhoods of 

( )kT y  and ( )kT z , respectively, with ( , )d v w δ>  for every 

v V∈  and w W∈ . In the system ( , )X X T T× × , the open set 

V W×  is a neighborhood of the minimal point 

( ( ), ( ))
k k

T y T z .  

Therefore, the set (( ( ), ( )), )
k k

T TN T y T z V W× ×  is syndetic. 

By the choice of V  and W , so 

(( ( ), ( )), ) ( , )
k k

T T TN T y T z V W k N U δ× × + ⊂ . 

Therefore, ( , )TN U δ
 
is also syndetic. 

Theorem 3.3. Let T  has almost specification property and 

has an invariant measure with full support. If T  is sensitive, 

then T  is syndetically sensitive with the same constant of 

sensitivity. The following lemma follows from the ergodic 

theorem. 

Lemma 3.4 ([11]). If ( , )X T  is a compact dynamical system, 

then for every nonempty open set U X⊂  there exists a point 

x X∈  such that ( ( , )) ( )d N x U Uξ= . 

Lemma 3.5 ([3]). Let ( , )X T  be a compact dynamical 

system. An open set U X⊂  is universally null if and only if 
( ) 0Uξ = , or equivalently ( ( , )) 0d N x U =  for every x X∈ . 

Proof of Theorem 3.3. Fix any nonempty open set U . there 

is 0ε >  and nonempty open sets W V U⊂ ⊂  such that the ε

-neighborhood of W  is contained in V  and V U⊂ . Since U  

is not universally null, it is concluded from Lemma 3.4 and 

Lemma 3.5 that there is 0γ >  and a point x W∈  such that 
( ( , ))d N x W γ= . So 

# ( ( , ) | )
2

n
d N x W n

γ≥  for every n N∈ . 

Using the almost specification property, there is an 0M>  

such that for all m M> , there exists ( , )
2

m
g m

γε ≥ . 

Let max{ , , ( )}gn N M k ε= . Let 0 0 0
{ } ,{ } ,{ }

j j j j j j
x nε∞ ∞ ∞

= = =  

be constant sequences, where , ,
j j j

x x n nε ε= = =  for 

every j ∈ℕ . By ([3], Lemma 3.4) there is a point y such 

that ( ) ( ; , )
jn

nT y B g n ε∈ for every j ∈ℕ . It is claimed that 

( , )N y V  is syndetic (has gaps bounded by 2n ). Assume 

conversely that ( )lT y V∉  for 2n consecutive indices l . 

In particular, for some 0j ≥  and every 0 i n≤ <  such that 

( )iT x W∈ it necessarily has ( ( ), ( ))jn i iT z T xς ε+ ≥ . But this 

leads to a contradiction: ( , )
2 2

n n
g n

γ γε≤ < . Therefore 

( , )N y V  is syndetic with gaps bounded by 2n  as claimed. 

By the Auslander-Ellis Theorem ([12], Theorem 8.7) there is a 

minimal point 2n  proximal to y . It is easy to see that 

( )lT z U∈  for some 0l ≥ . Since ( )lT z  is also a minimal 

point the proof is finished. 

Applying the proof process of Theorem 3.1, the Theorem 

3.3 is proved. 

Theorem 3.6. Let ( , )X T be a dynamical system with strong 

specification property. If ( , )X T  has the d− shadowing 

property or d−shadowing property, then ( , )X T  is totally 

syndetically transitive. 

Lemma 3.7. If ( , )X T  
is a topologically transitive system 

with a dense set of minimal points, then ( , )X T  
is totally 

syndetically transitive. 

Proof. Let ,U V  be non-empty open subsets of X  

containing points 1y  
and 

2y , respectively. Choose a 

symmetric neighborhood U  of the diagonal 
X

∆  
such that 

( ){ }1 1    ,[  ]   |  yU y X y y U V= ∈ ∈ ⊂  

and 

( ){ }2 2    ,[  ]   |  yU y X y y U W= ∈ ∈ ⊂ . 

Choose a positive integer ( )M U  as in the definition of TSP. 

For any sequence, 

1 1 2 20 k ka b a b a b= = < ≤ < < ≤⋯  

with 
1

, 2,3, ,
j j

a b M j k−− ≥ = ⋯  and 

1 2, , kx x x X∈⋯ , there exists a z X∈  such that 

( ) ,pT z z p N Nε= > +  and ( ), ,i

jF z x U∈  , 1,2, ,j ja i b j k≤ ≤ = ⋯ .  
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Thus, ( )0

1,F z x U∈ , i.e. ( )1,z x U∈ . Since U is symmetric, 

z V∈ . Thus, every open set V  of X  contains a periodic 

point. Hence, the set of periodic points of T  is dense in 
X . 

Lemma 3.8 ([13]). For a dynamical system ( , )X T , the 

following statements are equivalent: 

(1) T  has the d−shadowing property (resp.,  

d−shadowing property); 

(2) 
kT  has the d−shadowing property (resp.,  

d−shadowing property) for any k N∈ ; 

(3) 
kT  has the d−shadowing property (resp.,  

d−shadowing property) for some k N∈ . 

Proof of Theorem 3.6. It is well known that every periodic 

points are minimal points. 

By Lemma 3.2 ( , )X T  has a dense of minimal points. First, 

it is presented a proof for the case of the d−shadowing 

property. Given any pair of nonempty open subsets ,U V X⊂ , 

there exist ( ) ,u U M T∈ ∩  

( )v V M T∈ ∩  and 0ε>  such that ( ),2B u Uε ⊂
 
and 

( ),2B v Vε ⊂ . Points ,u v  are minimal, hence there exists 

0K >  such that for any n N∈ , so 

[ ] ( )( ) [ ] ( )( ),   , , ,   , ,
T T

n n K N u B u n n K N v B vε ε+ ≠∅≠ +∩ ∩ . There 

exists 0δ>  such that for any ,   y z X∈ . 

( ) ( ) ( )( ), ,n nd y z d T y T zδ ε< ⇒ <  for all 0 n K≤ ≤ . 

Put 
1 2L =  and 

1 n nL L n−= +  for 2n≥  and  

[ ] [ )2 2 1 1, 0,n nn N
L L L+∈

Α = ℕ∩ ∪∪  

and then denote [ ]2 1 2,n nn N
L L−∈

Β=ℕ∩∪ . It is not difficult to 

check that 
1 2( \ , ,{ 1})d L L+ =ℤ ⋯ , and 

1
( ) ( )

2
d dΑ = Β = . 

Choose a sequence 
0

{ }
i i

x ∞
=  

with 

( ), ,

( ), .

i

i i

T u i
x

T v i

 ∈Α
= 

∈Β
 

Directly by definition, it is obtained that 0
{ }

i i
x ∞

=  is aγ−
ergodic pseudo-orbit for any 0γ >  and so by the d−
shadowing property of T , there exists x X∈  such that 

0

1
, {(

2
( )} , )

i i
x xd δ∞

=Λ > .  

But, both sets 
0

} ),( ,{
i i

x x δ∞
=Α Λ∩  and 

0} ),( ,{ i ix xB δ∞
=Λ∩  are 

infinite. Therefore, there exists 

0
( , ),{ }

i i
x xs δ∞

=Λ∈ Α ∩  and 0
( , ),{ }

i i
x xt δ∞

=Λ∈Α∩  

such that K t s< − . 

Clearly, )( )( ), ( ) ( ( ),s s s

s
d T x T u d T x x δ= <  and 

)( )( ), ( ) ( ( ),t t t

t
d T x T u d T x x δ= < , and points ,u v  are minimal 

hence there exist 0 ', 's t K≤ ≤  such that 
' ( ) ( , )s sT u B u ε+ ∈  

and 
' ( ) ( , ).t tT v B v ε+ ∈  Then it has 

' '( ( ), )( )s s s sd T u T x ε+ + <  

and 

' '( ( ), )( )t t t td T v T x ε+ + < . 

In particular, ' ( ' )( ) 0t t s s+ − + >  and 

' ( ) ( ,2 )s sT x B u Vε+ ∈ ⊂ . 

This proves that ( , )X T  
is transitive, hence syndetically 

transitive by Lemma 3.7.  

By Lemma 3.8, the dynamaical system ( , )nX T  has d−
shadowing for every 1,2, ,n = ⋯ which completes the proof 

of the case of the d−shadowing property. If ( , )X T  has the d−
shadowing property then the same proof works, with the only 

modification of the definitions 

1 1

1 1
2, 2 nl l

n
l L l −+ += = = ⋯

 

and 

1n nL l l= + +⋯  for 2n≥ . 

4. Conclusion 

In the research of dynamical system, because the exact 

solutions of most systems cannot be obtained, scholars often 

use numerical calculation. The existence of computational 

errors inevitably leads to the production of “pseudo-orbit”. It 

is well known that if a system has a “pseudo-orbit-shadowing 

property in the usual sense”, then any pseudo-orbit with a 

sufficiently small single step error must be tracked by a real 

orbit-shadowing, and its “shadowing error”is uniformly 

bounded. This indicates that the numerically calculated 

pseudo-orbit can truly reflect the local dynamic behavior of 

the system in a certain sense. 

In this paper, it is introduced several types of strong 

sensitivity and strong transitivity, and discussed the 

relationship between these properties in systems with different 

shadowing properties. It will lay a theoretical foundation for 

further exploring the dynamical behavior of the system. 
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