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Abstract: There are many problems in the field of science, engineering and technology which can be solved by differential 

equations formulation. The wave equation is a second order linear hyperbolic partial differential equation that describes the 

propagation of variety of waves, such as sound or water waves. In this paper we consider the convergence analysis of the 

explicit schemes for solving one dimensional, time-dependent wave equation with Drichlet and Neumann boundary condition. 

Taylor's series expansion is used to expand the finite difference approximations in the explicit scheme. We present the 

derivation of the schemes and develop a computer program to implement it We use spectral radius of Matrix obtained from 

discretization and Von Neumann stability condition to determine stability, and consistence of the method from truncated error 

from discretized method. Using Lax Equivalence Theorem, convergence of the methods was described by testing consistency 

and stability of the methods. And it is found out that the scheme is stable with the Drichlet boundary and conditionally stable 

with Derivative boundary condition. 
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1. Introduction 

The wave equation is a second order linear hyperbolic 

partial differential equation that describes the propagation of 

variety of waves, such as sound or water waves. It arises in 

different fields such as an acoustics, electromagnetic or fluid 

dynamics [6, 7]. In many situations finding analytic solutions 

to partial differential equation is unrealistic or even 

impossible. Numerical methods that utilize computer 

algorithms are then used to find approximate solution [2, 3, 

10]. The focus of this paper is to determine the stability and 

convergence of finite difference schemes that approximates a 

solution of wave equation. Suppose that an elastic string of 

length L is tightly stretched between two supports at the same 

horizontal level. So that the x-axis lies along the string. The 

elastic string may be thought of as violin sting, guy wire or 

possibly an electric power line. Suppose that the string is set 

in motion so it vibrates in vertical plane and let ���, �� 
denote the vertical displacement experienced by the string at 

the point � at time � if damping effects, such as air resistance 

are neglected. If the amplitude of the motion is not too large, 

then ���, ��  satisfies the equation. ��� = 	
���  On domain 0 < � < �, � > 0  the equation is one dimensional wave 

equation. [11] 

 
Figure 1. A vibrating string. 

The coefficient 	
 in the equation is 	
 = �� where T is the 

tension (force) in the string and m is the mass per unit length 

of the string material. To describes the motion of the string 

completely it is necessary also to specify suitable initial and 

boundary conditions for displacement ���, ��. The ends are 

assumed to remain fixed and therefore the boundary 

condition are ��0, ��  =0 ���, �� = 0	� ≥ 0  since the wave 
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equation is of second order with respect to t is plausible to 

prescribe two initial conditions those are the initial position 

of the string ���, 0� = ����. 0 ≤ � ≤ �  And its initial velocity ����, 0� = ����	0 ≤� ≤ �  where �	 and 	�	 are given functions. The finite 

difference methods are the techniques for numerical solution 

to the wave equation by the discretization of space and time 

Let the string in the deformed state coincide with the 

interval [0, �]  on the x axis, and let ���; 	��  be the 

displacement at time �	in the y direction of a point initially at �.  the displacement function �	 is governed by the 

mathematical model 

������ = 	
 ������ 	+ ���, ��	� ∈ �0, ��, � ∈ �0,  �        (1) 

(Governing equation) 

���, 0� = ����, ����,!��� = ����	� ∈ �0, �� (Initial condition)      (2) 

��0, �� = ���, �� = 0 (Boundary conditions) � ∈ �0,  �  (3) 

Since this PDE Contains a second-order derivative in time, 

we need two initial conditions, here ���, 0� =����	 specifying the initial shape of the string , ����,  and ����,!��� = ����	In addition, PDEs need boundary conditions, 

here	��0, �� = ���, �� = 0, specifying that the string is fixed 

at the ends, that ist the Displacement	�	is zero. The solution ���, �� varies in space and time and describes waves that are 

moving with velocity 	 to the left and right. 

2. Finite Difference Methods 

The finite difference techniques are based up on the 

approximations that permit replacing differential equation by 

finite difference equation. There finite difference 

approximations are algebraic in form, and the solutions are 

related to grid points. Thus, a finite difference solution 

basically involves three steps: 

Dividing the solution into grids of notes. 

Approximating the given differential equation by finite 

difference equivalence that relates the solutions to grid 

points. 

Solving the difference equations subject to the prescribed 

boundary conditions and or Initial conditions. [2, 5, 9] 

2.1. Explicit Finite Difference Method 

The numerical solution of one dimensional wave equation 

using explicit scheme is obtained and the error calculated. To 

determine the stability and convergence, we will consider the 

simplified form of the wave equation (1) Common form. 		
 ������ = ������ + ���, ��	 With the boundary condition ��0, �� = ���, �� = 0	 And the initial condition u (x, 0) 

= 	�	���,  and "#��, 0� 	= 	����.  Using finite difference we 

have 

������ = �$%&,'(
�$,')�$*&,'	+�                      (4) 

������ = �$,'%&(
�$,')�$,'*&,�                       (5) 

Substituting equations (4) and (5) into the equation (1) it is 

approximated by 

	
 �$%&,'(
�$,')�$*&,'+� =
�$,'%&(
�$,')�$,'*&,�              (6) 

�$,'%&(
�$,')�$,'*&,� = 	
 �$%&,'(
�	$,')�$*&,'+�              (7) 

�-,.)/ = 2�-,. − �-,.(/ + 2�,�+� 3�-)/,. − 2�	-,. + �-(/,.4 (8) 

Making 	�-,.)/	 the subject and substituting 	5
 = 2�,�+�  we 

obtain �-,.)/ = �2 − 25
��-,. + 5
�-)/,. + 5
�-(/,. − �-,.(/ (9) 

2.2. Matrix Form of Explicit Scheme 

Referring to equation (1), we discretize in space, using n 

nodes the temperature at time j ∆ t is given by [�7j =�2, n, �3, n, �4, n, … 	�n − 1, n]�	 since �1, > = 0  for all j 

When grouped in values in rows and using r=
?,+  Equation	�9� 

can be rearranged to obtain �7.)/ = 5
�-(/,. + �2 − 25
��-,. + 5
�-)/,. − �-,.(/	 (10) 

The parameter 5 = ?,+ > 0 depends up on wave speed and 

the ratio of space and time step size the boundary condition 

(1.) Require that (2) this allow us to rewrite the system in 

matrix form �7.)/ = A�7. − �7.(/ + BC                         (11) 

Where A = D2	�1 − 5
� 5
5
 ⋱ … 0⋱ ⋮⋮ ⋱0 … ⋱ 5
5
 2	�1 − 5
�G and 

�7. = H �/,.⋮�-(/,.I 

2.3. One Dimensional Wave Equation with Derivative 

Boundary Condition 

The boundary condition ���, �� 	= 	����	makes �	change 

sign at the boundary, while the condition ����, �� =	0	perfectly reflects the wave. Our next task is to determine 

the stability with boundary condition	����, �� = 	0, which is 

more complicated to express numerically. We shall present 

two methods for implementing ����, �� = 	0	 in a finite 

difference scheme, one based on deriving a modified stencil 

at the boundary, and another one bead on extending the mesh 

with ghost cells and ghost points. 

Neumann boundary condition: 

 
���. = J. ∇� = 0                                (12) 

The derivative		��	�. 	is in the outward normal direction from 

a general boundary. 
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For one dimension domain	[0; �], we have that: L�LJM�NO = LL� , L�LJM�N! = − LL� 

Boundary conditions that specify the value of �.  are 

known as Neumann conditions, while refer to specifications 

of 	� . When (
���. = 	0	or 	�	 = 	0 ) it is Dirichler boundary 

condition 

The Discretization of derivatives at the boundary in the 

finite difference scheme is used central differences in all the 

other approximations to derivatives in the scheme, it is 

tempting to implement (12) at �	 = 	0  and �	 = 	 �.	by the 

difference 

�*&,'(�&,'
∆� = 0                                   (13) 

The problem is that 	�(/,.	is not a �	value that is being 

computed since the point is outside the mesh. However, if we 

combine �13�	with the scheme for j = 0, 

2.4. Fourier Method (Von Neumann Stability) 

Fourier stability analysis allows determining appropriate 

step sizes for an accurate solution when the wavelength or 

decay constant (which is given in terms of parameters such as 

a diffusion constant or wave velocity in the (PDE) has a 

certain value. Fourier stability analysis does not take 

boundary conditions for a specific problem into account. And 

it performed by substituting the analytic solution to a partial 

differential equation into the numerical finite difference 

equation. [8, 12-14] 

Assume ���, �� = ∑ �Q, �t�exp	�ikx� 
The sum is over	X, the Fourier frequencies. Now take for �	just one Fourier 

Term ���, �� = �Q�t�exp	�ikx� And evaluate it at (�-,�.,) to 

get �-,. = �Q. exp�iki∆x� , �-(/,. = �Q. exp�ik	�j − 1�∆x� , �-)/,.)/ = �Q.)/ exp�ik	�j + 1�∆x�  and �-,.(/ =�Q.(/ exp�ik	�j + 1�∆x�  These expressions can be plugged 

directly into any finite difference scheme to check for 

stability. The growth rate G is defined as G = Y�Z'%&�Z' Y	 for 

stability we need G < 1 for all frequencies k. Conditional 

stability means we only have stability on a certain condition. 

Usually the condition limits ∆t in function of ∆x 

2.5. Matrix Method to Determine Stability 

The condition for stability of methods is determined by 

finding the spectral radiu	which is	[�\� =max (]C) where ]C 
is an eigenvalue of matrix A, as illustrated below. 

(i) If [�\� <1 then the system is stable. 

(ii) If	[�\� <	1then the system is stable. 

(iii) If [�\� >1 then the system is unstable. 

Tridiagonal matrices are often found in connection with 

finite differences. Tridiagonal matrices are easy to deal with 

since there exists ancient numerical methods both for solving 

their linear systems of equations and eigenvalue problem. 

Here we consider the eigenvalue problem for a general 

tridiagonal matrix of the form [1, 4, 13, 15] 

Lax Equivalence theorem: The Lax-Richtmyer 

Equivalence Theorem is often called the Fundamental 

Theorem of Numerical Analysis, even though it is only 

applicable to the small subset of linear numerical methods for 

well-posed, linear partial di erential equations. Along with 　
Dahl Quist’s equivalence theorem for ordinary di erential 　
equations, the notion that the relationship consistency + 

stability ⇒ convergence always holds has caused a great deal 

of confusion in the numerical analysis of di erential 　
equations. In the case of PDEs, mathematicians are most 

often interested in nonlinear phenomena, for which Lax-

Richtmyer does not apply. More damningly, the forward 

implication that 

Consistent +stability ⇒ convergence 

Theorem: Gerschgorin’s theorem: Consider a square 

matrix A = (_C- ), for row i the disk C̀  have centre _CC  and 

radius∑ a_C-ab-N/-cC . Then the theorem states that; 

Every eigenvalue of A lies in some	 C̀ . 
If S is the union of s disks C̀  such that S is disjoint from 

all other disks of this type, then S contains precisely m 

eigenvalues of A. 

3. Analysis of Convergence for Explicit 

Scheme 

3.1. Consistence of the Explicit Method 

The truncation error of the approximation of the time 

derivative is  / given by 

������ = �$,'%&(
�$,')�$,'*&,� +  /	Where  /= − ,�/
 �d���d ��, e� 
Where t−X < 	e < � + X	from the Taylor series expansion 

Similarly, for the space derivative, 
������ = �$%&,'(
�$,')�$*&,$+�  

+ 
 

Where 	 
=− +�/
 ������f, �� is the truncation error � − ℎ ≤	f ≤ � + ℎ Combining the two terms above 
������ − _
 ������ = 0 �-,.)/ − 2�-,. + �-,.(/X
 − _
 �-)/,. − 2�	-,. + �-(/,.ℎ
 +  h= 0 

Where  hthe truncation error  h= / −  
 = − ,�/
 �������, e� 
+
+�/
 ������f, �� 

Where � − ℎ ≤ 	f ≤ � +h and t−X < 	e < � + X  It then 

follows that 

| h| ≤ ,�/
j���� + +�/
j����=
//
 �X
j���� + ℎ
j����� 

Where j����is a bound for |�������, e�|andj����is a bound 

for |������f, ��	| 
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Hence  h → 0 as k, h 	→	 0 that is the difference 

approximation is consistent 

3.2. Stability Analysis of Explicit Method 

3.2.1. Stability For Explicit with Drichlet Boundary 

Condition 

The stability of this numerical scheme proceeds as follows �-,.)/ = �2 − 25
��-,. + 5
�-)/,. + 5
�-(/,. − �-,.(/	 (14) 

We first need to recast the second order iteration system 

(14) in to a fist order system �7.)/ = A�7. − �7.(/ + BC                     (15) 

l�7.)/�7. m = nA −oo 0 p l �7.�7.(/m + BC                  (16) 

Let q̅.)/ = l�7.)/�7. m , q̅. = l �7.�7.(/m  and s = nA −oo 0 p 

Implies that q̅.)/ = sq̅. + BC                                (17) 

Therefore the stability of the method will be determined by 

the Eigen value of the coefficient matrix C the Eigen vector 

equation st = ]t  where t = n�up  can be written out in its 

individual components 

nA −oo 0 p n�up = ] n�up                            (18) 

A� − u = ]�                                  (19) � = ]u                                       (20) 

Subtitling (20) into (19) we find 

�]A − ]
 − 1�u = 0 Or Au = �] + /v�u           (21) 

The latter equation implies that u is the Eigen vector of A 

with ] + ](/  the corresponding Eigen values of the 

tridiagonal matrix A 

n] + /vp = 2	�1 − 5
 + 5
 cos z,. � k= 1, 2. N-1       (22) 

Multiplying both sides of equation (22) by ]  leads to a 

quadratic equation for the Eigen values let _, = 1 − 5
 +5
 cos z,.  ]
 − 2_,] + 1 = 0 Where 1 − 25
 < _, < 1 Each pair of 

solutions to this n-1 quadratic equation namely ], = _, ± |_,
 − 1 Yields two Eigen values of matrix C 

If _, < −1 then one of the two eigenvalues will be both < −1,	which means that the linear iterative system has an 

exponentially growing mode If _, < 1, then the Eigen values 

are complex number of modules 1, indicated stability of the 

matrix C [7] 

Therefore in view of 1 − 25
 < _, < 1 we should require 

that 

5 = 2,+ < 1 Or X < +2                             (23) 

This places a restriction on the relative sizes of the time 

and space steps. We conclude that the numerical scheme is 

conditionally stable. The stability criterion (23) is known as 

the Courant condition, The Courant condition requires that 

the mesh slope, which is defined to be the ratio of the space 

step size to the time step size, namely	ℎ/X, must be strictly 

greater than the characteristic slope c 

3.2.2. Stability of the Explicit Method with Derivative 

Boundary Condition 

The difference equation that we will use to time stepping 

the numerical scheme ���1, J� = 0 Left boundary > = 1, J = 1,… ,j  (24) ��,�~, J� = 0 Right boundary > = ~, J = 1,… ,j  (25) �-)/,. = �-(/,. Derivative boundary for > = 0  (26) �-(/,. = �-)/,. Derivative boundary for > = 	~  (27) �-,/ = �- Row 1 > = 2,… , ~ − 1	J = 1      (28) 

�-,
 = �- + �-X + h�
 3�-)/ − 2�- + �-(/4 Row 2 > = 2, ~ − 1 

n= 2                     (29) �-,.)/ = �2 − 25
��-,. + 5
3�-)/,. + �-(/,.4 	− �-,.(/  (30) 

We can eliminate the fictitious value �-(/,. we see that �-(/,.= �-)/,.	from (16), which can be used in (21) to arrive 

at a modified scheme for the boundary point �!,.)/ �-,.)/ = �2 − 25
��-,. + 25
�-)/,. − �	-,.(/ For > = 0 (31) 

Similarly, if it applied at �	 = ~	is discretized by using 

(31) we have �-,.)/ = �2 − 25
��-,. + 25
�-(/,. − �	-,.(/ For > = ~ (32) 

The modification of the scheme at the boundary is also 

required for the special formula for the first time step Then 

we have the explicit scheme with derivative boundary is �-,.)/ = �2 − 25
��-,. + 25
�-)/,. − �	-,.(/ For > = 0 (33) 

�-,.)/ = �2 − 25
��-,. + 5
3�-)/,. + �-(/,.4 − �	-,.(/	> =1, … , ~� − 1                                       (34) �-,.)/ = �2 − 25
��-,. + 25
�-(/,. − �	-,.(/ For > = ~� 

(35) 

Its matrix form is as follows 

�7.)/ = \�7.	 + �� + BC                        (36) 

Where \ =
�
��
2 − 25
 25
5
 2 − 25
 ⋯ �⋮ ⋱ ⋮�… ⋯ ⋱ 5
25
 2 − 25
�

��, 
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�7. = H �/,.⋮�-,. − 1I 

�� =
�
��
�-,/�-,/⋮⋮�-,/�

�� =
�
��
��

�-�- + �-X + 5
2 ��-)/ − 2�- + �-(/�	⋮⋮�- + �-X + 5
2 ��-)/ − 2�- + �-(/�	�
��
��

 

�7.)/ = \�7.	 + 	� where 	� = �� + B��             (37) 

This is significant result in that it shows that the vector 	� 
does not affect stability 

For stability [�\� ≤ 1 . Consider the matrix \ =

�
��
2 − 25
 25
5
 2 − 25
 ⋯ 0⋮ ⋱ ⋮0… ⋯ ⋱ 5
25
 2 − 25
�

��  

The disks for row 2  to ~ − 1  have center 2 − 25
  and 

radii 25
 so the eigen value lies in 2 − 25
 − 25
 ≤ ] ≤ 2 −25
 + 25
 2 − 45
 ≤ ] ≤ 2 

2 − 45
 ≥ −1 which implies that 5 ≤ √�
  

Consider the first and last row with center 2 − 25
  and 

radii 25
 The disk is 

 ��\� ≤ 1 If 2 −	45
 ≥ −1 and 2 so the explicit scheme 

is stable for 5 ≤ √��  

This shows that with derivative boundary condition the 

explicit scheme stability depends on the values of r. 

4. Numerical Experiment 

Numerical examples are presented to verify stability and 

convergence of the method 

Example 1 Use the explicit scheme to solve the one 

dimensional wave equation ��� = 4��� 	0 ≤ � ≤ 1,0 ≤ � ≤ 1 ���0, �� = cos�2�� , ����, �� = − cos�2��  and ���, 0� =sin���, ����, 0� = 0 

Example 2. Use the explicit scheme to solve the one 

dimensional wave equation ��� = 4���  For � ∈ [0, �]	� ∈ [0,  ]  With boundary 

condition ��0, �� = ���, �� = 0  Initial distribution is ���, 0� = sin���� and ����, 0� = 0 

 
Figure 2. Stability of explicit method for 5 = 0.5, X	 = 0.05	_J�	ℎ = 0.1 at �// = 0.5 And it’s instability for r = 1 k=0.25 and. ℎ = 0.5 at �// = 0.25. 

Table 1. Maximum absolute error of example 1 for r=0.75 explicit method at 

different time t. 

Time step ∆# # Explicit Method 

2 0.0475 0.0475 0.8254 

7 0.0475 0.2850 0.0455 

11 0.0475 0.475 5.4487 

15 0.0475 0.665 10.2516 

19 0.0475 .0.855 18.4482 

Table 2. Maximum absolute error of example 1 for r=1.05 Explicit method at 

different time. 

Time step ∆# # Explicit Method 

2 0.0525 0.0525 0.7662 

7 0.0525 0.315 2.1107 

11 0.0525 0.525 3.7374 

15 0.0525 0.7350 6.2255 

19 0.0525 .0.9450 32.2921 

 
Figure 3. Stability of explicit method for 5 = 0.75, X	 = 0.0475	_J�	ℎ =0.1 at �// = 0.475 and it’s instability for r = 1.05 k=0.0525 and. h=0.1 at 
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�// = 0.525. 

5. Discussion and Conclusion 

5.1. Discussion 

I used one dimensional wave equation by considering the 

space domain to have a length of M that is ��� = 	
��� +���, ��  with drichelet and derivative boundary conditions. 

The explicit finite differences were considered. To determine 

its stability by Von Neumann stability condition and Eigen 

value of tridiagonal matrix obtained from discretized scheme 

of the equation was used to develop the analysis. To produce 

values for the problem variable finite difference mesh point 

were used for the space domain. A mat lab code was written 

for explicit methods with drichlet and derivative boundary 

condition 

The numerical scheme is said to be stable when an error is 

introduced at certain stage, then remains bounded as time 

approaches infinity. It so happen that the error propagates in 

the same way as the problem variable, so an unstable process 

can be observed by the solution growing beyond any bounds. 

With small r the method performed well. The explicit scheme 

has an advantage that it is easy to set up, and disadvantage 

that it is unstable for r greater than one with drichilet and 

unstable for 5 ≤ √�



 with derivative boundary 

5.2. Conclusion 

This study has considered the explicit finite difference 

schemes for solving one dimensional time dependent wave 

equation with drichlet and Neumann boundary conditions. 

The difference schemes are derived. Using Lax Equivalence 

Theorem convergence of the method was described by 

testing consistency and stability of the methods. Stability was 

discussed by using Gerschgorin’s Theorem and Von 

Neumann stability condition. And the stability of the Explict 

method is shown by the table below 

Table 3. Summary of the finding. 

"## = ��"�� + �(�, #) Matrix method and Fourier method 

Methods Drichilet Derivative 

Explicit scheme stable 5 ≤ 1 conditionally stable 5 ≤ √3/2 

 

In the above table the Drichilet boundary condition are  

�(0, �) = �(�, �) = 0  and the diivative boundary condition 

are   �(�, �) 	= 	�(�), ��(�, �) = 	�(�) 1 is the critical value 

such that for 5 ≤ 1	 scheme is stable. 

A systematic study was applied to the two test numerical 

problems and the schemes have been successfully applied. 

The performance of the schemes for the considered problems 

was measured by calculating the error. 
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