
 

Mathematics Letters 
2021; 7(3): 37-40 

http://www.sciencepublishinggroup.com/j/ml 

doi: 10.11648/j.ml.20210703.11 

ISSN: 2575-503X (Print); ISSN: 2575-5056 (Online)  

 

Study of the Existence of Global Attractors for the 
Wezewska, Czyewska and Lasota Models 

Edgar Alí Medina
1
, Manuel Vicente Centeno-Romero

2
, Fernando José Marval López

2
,  

José Feliciano Lockiby Aguirre
3
 

1Departamento de Ciencias, Universidad de Oriente Núcleo de Nueva Esparta, Guatamare, Venezuela 
2Departamento de Matemáticas, Escuela de Ciencias, Universidad de Oriente Núcleo de Sucre, Cumaná, Venezuela 
3Departamento de Informática, Escuela de Ciencias, Universidad de Oriente Núcleo de Sucre, Cumaná, Venezuela 

Email address: 

 

To cite this article: 
Edgar Alí Medina, Manuel Vicente Centeno-Romero, Fernando José Marval López, José Feliciano Lockiby Aguirre. Study of the Existence 

of Global Attractors for the Wezewska, Czyewska and Lasota Models. Mathematics Letters. Vol. 7, No. 3, 2021, pp. 37-40.  

doi: 10.11648/j.ml.20210703.11 

Received: May 8, 2021; Accepted: July 21, 2021; Published: August 31, 2021 

 

Abstract: In this research we present a study of global attractors in mathematical models of differential equations, which are 

an important tool in mathematics; furthermore, taking advantage of the stability of the solutions, it was possible to determine 

the control of biomedical phenomena, among other aspects, present in various population groups. Likewise, differential 

equation models are used to simulate biological, epidemiological and medical phenomena, among others. The reference 

population groups used in this research are the family of population models given by the differential equations N'(t)=p(t, N (t)) 

- d(t, N (t)). A particular case of this family of differential equations is the mathematical model called the Wezewska, 

Czyewska and Lasota (WCL) model, whose form is given by: N'(t)=pe
(-q)

 - µN (t). This model describes the survival of red 

blood cells (erythrocytes) in humans. The WCL model, in discrete variable, has a non-trivial global attractor. In this research 

we demonstrate, using the Schwarz derivative technique, the existence of at least one model global attractor. On the other hand, 

the results of the present investigation showed the existence of a single fixed point, as the only global attractor characterized by 

the equation N=pe
(-qN)

 - µN. 
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1. Introduction 

The study of global attractors in models of differential 

equations, as well as their existence, definition, stability and 

application in various spaces and models, has been treated in 

recent years by several researchers, as expressed in [1-8]. 

Similarly, fractional Lasota-Wazewska models have been 

studied in [9, 10]. 

This article is motivated by works [1-3], where the authors 

study the existence of global attractors for equations in 

differences of the Wezewska, Czyewska and Lasota (WCL) 

model, on the existence of the fixed point. The authors, in the 

previous works, up to that date, have not found a rigorous 

test, they only present a graph that gives an idea of the 

existence, and the uniqueness is not proven, which is an open 

problem. It should be noted that models such as those treated 

in the works mentioned above were described, for the first 

time, using differential equations, in [11, 12]. Similarly, 

epidemiological studies have been carried out using 

differential equation models, such as those discussed in [13], 

as well as in [14]. 

In this research, we consider the family of population 

models given by: 

N'(t)=p(t, N(t)) - d(t, N(t))                        (1) 

Different biological and medical phenomena were 

described by differential equations between the 1950s and 

1980s, such as the production of blood cells and the general 

approach, proposed by equation (1), to describe the dynamics 

of cell production [15]. In equation (1), p (t, N (t)) is the 
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production rate of the cells at time t, provided that the 

population size is N and d(t, N(t)) is the rate of mortality. It 

was a common belief for researchers that mortality was 

proportional to the number of circulating blood cells; that is: 

d(t, N (t))=µN(t). However, in this research we consider p(t, 

N(t))=pe
(-qN (t))

 and the model 

����� = ��	
���� − �����                    (2) 

to prove the existence of a single fixed point, as a single 

global attractor, characterized by equation (2). 

2. Methods 

A documentary research was carried out with a qualitative 

approach; Since a study of global attractors in models of 

differential equations is presented, these tools of great 

importance in mathematics. Behavior and responses are 

observed, by collecting all possible bibliographic material on 

the subject, making a detailed study of it. The hypothetical-

deductive method, characteristic of mathematical research, 

was used, so that the conjectures could be answered during 

the development of the work, which led to the achievement 

of the objectives. The present work shows an applied form 

that confronts theory with reality [17, 18]. 

3. Preliminaries 

Consider the system of differential equations 

�´��� = ������, con t > 0,                       (3) 

where f is a map of C
∞
 (I), with I=[a, b]. Let's consider the 

linearized system: 

����� = ���
�� �� ∗�� ����,                           (4) 

Where x* is an equilibrium point of equation (4); that is, 

f(x*)=0. 

Definition 1. An equilibrium point or stationary solution of 

a differential equation is a solution y(x)=a (constant) for all x ∈ R. That is, the stationary solutions or equilibrium points are 

those whose graphs are straight horizontal. 

Definition 2. The equilibrium point x * is locally stable for 

system (4), if for each ε > 0, there exists δ > 0, such that if |�� − �∗| < � , then |���, ��, ��� − ���, ��, �∗�| =|���, ��, ��� − �∗| <  . 

Definition 3. We will say that equation (3) has a fixed 

point at c, if f (c)=c. 

Definition 4. Let f: Ω ⊆ Rn
 → R

n
 be a C

1
 field and let x0 be 

an equilibrium point of x ′=f (x). 

1. It is said that x0 is stable, if for all ε > 0 there exists δ > 

0, such that for all � ∈ #���, ��Φ���� is defined for all 

t ≥ 0 and we have Φx (t) ∈ B (x0, ε) for all t ≥ 0. 

2. It is said that x0 is asymptotically stable, if x0 is stable 

and there is also r > 0, such that lim�→( Φ���� = ��, 
for all x ∈ B (x0, r). 

Definition 5. An equilibrium point x* is globally 

asymptotically stable, if it is locally stable and 

alsolim�→( ���� = �∗. 

Theorem 1. The real part of the eigenvalue (∂f/∂x(x^*)) is 

negative if and only if x* is local asymptotically stable. 

Definition 6. The critical points �) or the fixed points care 

locally stable or globally asymptotically stable, if they verify 

the previous definitions. 

Remember that the critical points �)  are those where f 

'(�))=0. 

Definition 7. A function f: R → R is contractive, if there is 

a constant k <1 such that for any x1, x2 ∈ R holds: 

d (f(x1), f(x2)) < k. d(x1, x2) 

That is, a contractive application is one that contracts the 

distances with a contraction ratio strictly less than unity. 

Where, in the set of real numbers, the distance between two 

of them is defined as follows: 

d(x1, x2)=| x1- x2| 

So the definition of contractive application is as follows: 

| f (x1) - f (x2) | < k. | x1- x2| 

Theorem 2 (Contraction). We will say that the map T: E → 

E, E ⊂ R is a contraction or a contractive operator, if there 

exists a constant L ∈ [0, 1), such that |*��� − *���| ≤,|� − �|, for all x, y ∈ E. 

Theorem 3. (Contractive fixed point). If T: E → E is a 

contraction, then T has an unique fixed point on E. 

Definition 8 (Derived from Schwarz). The Schwarz 

derivative is defined for a real function f of class C
3
, as: 

�-����� = �′′′���
���� − 3

2 1�′′���
�′��� 2

3
 

At all points where ���0� ≠ 0. 

This derivative has been used in differential delay 

equations with unimodal feedback, verifying that they do not 

satisfy the Schwarz derivative condition [16]. 

Theorem 4. (Schwarz's theorem). Let f of class C
3
 [a, b], 

with f: [a, b] → [a, b], suppose that f is strictly decreasing or 

with one unique critical point. If f has an unique fixed point 

at c y (sf)(x) is negative for all � ≠  �∗ , where �∗ is an 

unique critical point, then the local asymptotic stability 

condition 0 <| f '(c) | < 1, implies the global asymptotic 

stability for c. 

4. Equilibrium Point Analysis 

Theorem 5. The equation �´��� = ��	
���� − �����, with 

p, q ∈ [o, a]. 

a) If µ > 0, it has an unique critical point given by the 

equation��	
� − �� = 0. 

b) If -1 <µ <0, it has no critical points 

Theorem 6. Let x* be the unique equilibrium point of the 

system  �´��� = ��	
���� − ����� ; that is, ��	6�∗ − ��∗ =0 (6), then x* is local asymptotically stable. 

Proof. Calculate the characteristic polynomial relative to 

[T´(x*)], obtaining  λ = −7�8�	
�∗ + �: < 0; that is, x* is 
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local asymptotically stable. 

Theorem 7. If µ > 0, the unique equilibrium point of the 

equation �� .
�∗ − ��∗ = 0  (7) is globally asymptotically 

stable. 

Proof. If µ > 0, then by Theorem 5 equation (3) has an 

unique critical point given by the equation ��	
� − �� = 0, 

let this be x*, and by Theorem 6 x* is local asymptotically 

stable. 

5. Fixed Points Analysis 

If -1 < µ < 0, then the model �´��� = ��	
���� − ����� 

has an unique critical point given by: 

�∗ = 1
8 ln >− �8

� ? > 0 

Theorem 8. Suppose that the number series: 

A BC	D8C = 1
B A BC8C

(

CE�

(

CE�
 

is convergent and further suppose that: 

F� + D
G � ∑ BC8C(CE� I = , < 1, 

then the equation �´��� = ��	
���� − �����, -1 < µ < 0 has 

an unique fixed point, given by the equation ��	
� − �� =�. 

Proof. Let us define the operator *: KL, BM → K0, BM , as 

follows: *��� = ��	
� − ��, note that  

|*��� − *���|  ≤ � N∑ D
C!P(CE� �−8��C − �−8��CN + �|� − �| ≤  �� D

G �∑ 8CP(CE� BC� +  ��|� − �|. 
We take 

, = � + D
G ��∑ 8CP(CE� BC� < 1. 

Then T has an unique fixed point. So, the equation �´��� = ��	
���� − �����, -1 < µ < 0 has an unique fixed 

point. 

6. Global Analysis of the Asymptotic 

Stability of the Fixed Point C 

Theorem 9. For p, q ∈ (0, 1) and -1 < µ < 0, the fixed point 

C for the equation �´��� = ��	
���� − ����� is global 

asymptotically stable. 

Proof. Let  *��� = ��	
� − �� , defined in [0, a], 

then *´��� = −�8�	
� − � , with 0 < |*���| =|8��	
� + �| < 8��	
� < 1; that is, for N=C, 0 < |T'(C)| < 

1 which implies that C is local asymptotically stable. On the 

other hand, 

�-����� = − �8QK�8 − 2��
�M
2K�
�� + �8M3 < 0 

�∗ = D

 ln F− 6


R I > 0, where x* is the critical point and (sf) 

(x) < 0, ∀ x ≠ x*. Therefore, C is globally asymptotically 

stable. 

7. Conclusions 

A numerical representation of the solutions of the 

equation����� = ��	
���� − �����, -1 < µ < 0 it is: ��S� =∑ �−��C	DPT��	
��T�,CTED  this series when limC→P(|��S�| → ,  is convergent and converges to the 

fixed point C, if 0 < �|�| < 1. The way to find this sum is 

by using the recurrence method considering the difference 

equation ��S + 1� = ��	
��C� − ���S�, −1 < � < 0. 

We note that equation (2) is a scalar differential equation. 

It is natural to establish a control in the parameters that are 

exhibited in the equation in order to guarantee existence of: 

fixed points, equilibrium points and critical points. The first 

two are those that, in general, are of extreme importance for 

the global study of stability. As well as, the technique used in 

these systems is what we know as the famous Schwarz 

derivative technique. 

For p, q ∈ (0, 1) and -1 < µ < 0, the fixed point C for the 

equation �´��� = ��	
���� − ����� is global asymptotically 

stable. 

An interesting open problem would be to pose an 

analogous model in R
2
 as follows: 

U�´��� = �D��	
V����� − �D����
�´��� = �3��	
WX���� − �3���� 

Here it is notable that the system involves more parameters and 

it is obvious that a control can be established in the parameters to 

guarantee the fixed points and the equilibrium points. Known 

techniques to be used will be Dulac, Poincare-Bendixon. 

For three-dimensional differential equations the best 

known technique is the Liapunov functions. 

For dimensions in complicated spaces (normed, Banach, 

among others), more hypotheses must be added in the problem 

that support the stock conditions fixed points and critical 

points, and therefore their stability in the global sense. 

Another important aspect for differential equations of the 

abstract type is to be able to establish a definition of 

generalized dichotomy, which deduces generalized global 

stability for spaces of the abstract type. These are problems 

of interest raised in [14]. 
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