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Abstract: In Statistics, test of normality is of great importance and cannot be neglected in statistical analysis. However, there 

exist many techniques for such analysis and researchers usually face with the choice of test. From the literature, it has been 

established that power of test of normality vary significantly based on sample sizes. In this study, seven normality tests were 

reviewed and the classification into LMP and UMP were based on Power-of-Test. The test of hypothesis was done at 5% level 

of significance. The tests considered as; Shapiro-Wilk, Anderson-Darling, Bonett-Serial, Robust Jarque-Bera, Skewness, 

Lilliefors and Kurtosis tests. The sample sizes considered are 10, 20, 50 and 100 with 1000 replicates. Simulation was done 

from 3 distributions namely, normal, gamma and beta distributions. It was found that all methods were stronger for the 

detection of normality when normal distribution was used but the variation in their power was obvious when non-normal 

distributions were used. Among the methods, only three can be referred to as UMP while the rest are LMP. The UMP methods 

are Shapiro-Wilk, Anderson-Darling and Lilliefors as their Power-of-Test was not affected by sample sizes. 
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1. Introduction 

Test of normality is commonly use in data analysis 

irrespective of the field of study of the researchers especially 

in the determination of the most appropriate statistical 

technique for data analysis or hypothesis testing. Statistical 

methods were derived with some basic assumptions outside 

which the method becomes invalid [5]. For instance, in the 

case of Chi-Square test of dependency, it is assumed that the 

cells contain non-zero entries as observed values and more 

than 20% of the cells contain expected values more than 5. In 

a similar manner, Z-test and T-test which are often use by 

researchers for test of significant variation between variables 

are used with caution as the methods have basic assumptions 

such as normality of the variables and sample size of the 

observations [1, 25]. 

Generally, Statistical methods are of two types, namely, 

parametric and nonparametric methods. For the use of 

parametric methods, there is need for test of normality for the 

determination of suitability of the method or test statistic 

[20]. From the literature, there exist more than one hundred 

methods of test of normality for both univariate and 

multivariate and the sensitivity of the methods has been 

shown to depend on some factors such as sample size etc. 

According to Ukponmwan and Ajibade [35], some test of 

normality are more sensitive to small sample sizes and some 

are better used when the sample sizes are large. In the case of 

multivariate test of normality, sample size of the variables 

play key role in the choice of method of test of normality as 

shown in the literature [11, 13]. 

Despite the improvement on the normality methods as 

presented by researchers from different fields, there is 

significant or noticeable gap in the sensitivity of the methods 

which resulted to type I or type II error in many decision 

taken by the researchers. From the output of test of normality 

using Ryan-Joiner as presented in Minitab software and the 
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Kolmogorov Smirnov in a set of data, it was observed that 

the decision of the researcher vary which depends on the 

method used for the test of normality. This implies there is 

need for better understanding of a set of data before analysis 

or hypothesis testing. 

The study is aimed at classification of some selected 

normality methods into Uniformly Most Powerful and 

Locally Most Powerful. For a robust study, the following 

objectives were considered; 

1) Determination of effect of sample sizes on performance 

of normality test methods. 

2) Rating of the methods in terms of Power-of-Test and 

Type-I-Error. 

2. Review of Related Studies 

Stephen [32] confirmed the assumption of multivariate 

normality (MVN). According to the researcher, for the past 

50 years, over 50 tests of this assumption have been 

proposed. However, for various reasons, practitioners are 

often reluctant to address the MVN issue. In the research, 

several techniques for assessing MVN based on well-known 

tests for univariate normality were described and suggestions 

are offered for their practical application. The techniques are 

illustrated using two previously published sets of real-life 

data. In one of the examples it was shown that simply testing 

each of the marginal distributions for univariate normality 

can lead to a mistaken conclusion. 

According to Douglas, Bonett and Edith [9], kurtosis can 

be measured in more than one way. A modification of 

Geary’s measure of kurtosis is shown to be more sensitive to 

kurtosis in the center of the distribution while Pearson’s 

measure of kurtosis is more sensitive to kurtosis in the tails 

of the distribution. The modified Geary measure and the 

Pearson measure are used to define a joint test of kurtosis 

that has high uniform power across a very wide range of 

symmetric non normal distributions. 

Lobato, Ignacio, and Carlos [24] proposed the skewness-

kurtosis test statistic, but studentized by standard error 

estimators that are consistent under serial dependence of the 

observations. The standard error estimators are sample 

versions of the asymptotic quantities that do not incorporate 

any down weighting, and, hence, no smoothing parameter is 

needed. Therefore, the main feature of our proposed test is its 

simplicity, because it does not require the selection of any 

user-chosen parameter such as a smoothing number or the 

order of an approximating model. 

Thorsten and Herbert [33] confirmed various pattern of 

testing normality regarding to their power several tests were 

carried out. Well known test was Jarque and Bera [17-19], 

the test of Kuiper [22] and Shapiro and Wilk [29] as well as 

tests of Kolmogorov-Smirnov and Cramer Von Mises type. 

The tests on normality are based, first, on independent 

random variables (model I) and, second, on the residuals in 

the classical linear regression (model II). They investigated 

the exact critical values of the Jarque-Bera test and the 

Kolmogorov-Smirnov and Cramer Von Mises tests, in the 

latter case for the original and standardized observations 

where the unknown parameters µ and σ have to be estimated. 

The power comparison is carried out via Monte Carlo 

simulation assuming the model of contaminated normal 

distributions with varying parameters µ and σ and different 

proportions of contamination. It turns out that for the Jarque-

Bera test the approximation of critical values by the chi-

square distribution does not work very well. The test is 

superior in power to its competitors for symmetric 

distributions with medium up to long tails and for slightly 

skewed distributions with long tails. The power of the 

Jarque-Bera test is poor for distributions with short tails, 

especially if the shape is bimodal, sometimes the test is even 

biased. In this case a modification of the Cram´er-von Mises 

test or the Shapiro-Wilk test may be recommended. 

Ralph [28] viewed experimentally-derived data sets that 

are generated in the practice of clinical chemistry. It was 

stated that graphical presentation is essential to assess the 

data distribution. The distribution must also be assessed 

quantitatively. The approach determines if the data is normal 

or not. Finally the results of the tests of Normality must be 

shown to be free of sample size effects. In the work, four 

experimentally-derived data sets were used. They represented 

normal. Positive and negatively-skewed distributions were 

considered. These data sets were examined by graphical 

techniques, by moment tests, by tests of Normality, and 

monitored for sample size effects. In the conclusion, it was 

stated that the preferred graphical techniques are the 

histogram and the box-and-whisker plots that may be 

supplemented, with advantage, by quartile quartile or 

probability - probability plots. Classical tests of skewness 

and kurtosis can produce conflicting and often confusing 

results and. as a consequence. the alternative use often newer 

L-moments is advocated, Normality tests included the 

Kolmogorov Smirnov (Lilliefors modification), Cramer-von 

Mises and Anderson- Darling tests (empirical distribution 

function statistics) and the Gan"" Koehler. Shapiro-Wilk, 

Shapiro- Francia, and Filliben tests. 

Shengyi, Shengyi and Robert [31] used census block 

groups data on socio-demographics, land use, and travel 

behavior, to test the cutoffs suggested in the literature for 

trustworthy estimates and hypothesis testing statistics, and 

evaluate the efficacy of deleting observations as an approach 

to improving multivariate normality, in structural equation 

modeling. The results showed that the measures of univariate 

and multivariate non-normality will fall into the acceptable 

range for trustworthy maximum likelihood estimation after a 

few true outliers are deleted. 

Yap and Sim [36] compared the power of eight selected 

normality tests: the Shapiro–Wilk test, the Kolmogorov–

Smirnov test, the Lilliefors test, the Cramer–von Mises test, 

the Anderson–Darling test, the D'Agostino–Pearson test, the 

Jarque–Bera test and Chi-squared test. Power comparisons of 

these eight tests were obtained via the Monte Carlo 

simulation of sample data generated from alternative 

distributions that follow symmetric short-tailed, symmetric 

long-tailed and asymmetric distributions. The simulation 
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results showed that for symmetric short-tailed distributions, 

D'Agostino and Shapiro–Wilk tests have better power. For 

symmetric long-tailed distributions, the power of Jarque–

Bera and D'Agostino tests is quite comparable with the 

Shapiro–Wilk test. As for asymmetric distributions, the 

Shapiro–Wilk test is the most powerful test followed by the 

Anderson–Darling test. 

Adefisoye, Golam and George [2] examined problems of 

testing for normality in both theoretical and empirical 

statistical research. The performances of eighteen normality 

tests were all listed. Monte Carlo simulation was used from 

various symmetric and asymmetric distributions for different 

sample sizes ranging from 10 to 100. The performance of the 

test statistics were compared based on empirical Type I error 

rate and power of the test. The simulation results showed that 

the Kurtosis Test is the most powerful for symmetric data and 

Shapiro Wilk test is the most powerful for asymmetric data. 

According to Felix and Senyo [12], most parametric 

methods rely on the assumption of normality. Results 

obtained from these methods are more powerful compared to 

their non-parametric counterparts. However for valid 

inference, the assumptions underlying the use of these 

methods should be satisfied. According to the researchers, 

many published statistical articles that make use of the 

assumption of normality fail to guarantee it. Hence, quite a 

number of published statistical results are presented with 

errors. As a way to reduce this, in assessing univariate and 

multivariate normality, several methods have been proposed. 

In the univariate setting, the Q-Q plot, histogram, box plot, 

stem-and-leaf plot or dot plot are some graphical methods 

that can be used. Also, the properties of the normal 

distribution provide an alternative approach to assess 

normality. The Kolmogorov-Smirnov (K-S) test, Lilliefors 

corrected K-S test, Shapiro-Wilk test, Anderson-Darling test, 

Cramer-von Mises test, D'Agostinoskewness test, Anscombe-

Glynn kurtosis test, D'Agostino-Pearson omnibus test, and 

the Jarque-Bera test are also used to test for normality. 

However, Kolmogorov-Smirnov (K-S) test, Shapiro-Wilk 

test, Anderson-Darling test, and Cramer-von Mises test are 

widely used in practice and implemented in many statistical 

applications. For multivariate normal data, marginal 

distribution and linear combinations should also be normal. 

This provides a starting point for assessing normality in the 

multivariate setting. A scatter plot for each pair of variables 

together with a Gamma plot (Chi-squared Q-Q plot) is used 

in assessing bivariate normality. 

Ukponmwan and Ajibade [35] explained the sensitivity of 

nine normality test statistics; W/S, Jaque-Bera, Adjusted 

Jaque-Bera, D’Agostino, Shapiro-Wilk, Shapiro-Francia, 

Ryan-Joiner, Lilliefors’and Anderson Darlings test statistics, 

with a view to determining the effectiveness of the 

techniques to accurately determine whether a set of data is 

from normal distribution or not. Simulated data of sizes 5, 

10, …, 100 is used for the study and each test is repeated 100 

times for increased reliability. Data from normal distributions 

(N (2, 1) and N (0, 1)) and non-normal distributions 

(asymmetric and symmetric distributions: Weibull, Chi-

Square, Cauchy and t-distributions) are simulated and tested 

for normality using the nine normality test statistics. To 

ensure uniformity of results, the researchers used one 

software in all the data computations to eliminate variations 

due to statistical software. The error rate of each of the test 

statistic is computed; the error rate for the normal distribution 

is the type I error and that for non-normal distribution is type 

II error. Power of test is computed for the non-normal 

distributions and use to determine the strength of the 

methods. The ranking of the nine normality test statistics in 

order of superiority for small sample sizes is; Adjusted 

Jarque-Bera, Lilliefor’s, D’Agostino, Ryan-Joiner, Shapiro-

Francia, Shapiro-Wilk, W/S, Jarque-Bera and Anderson-

Darling test statistics while for large sample sizes, we have; 

D’Agostino, Ryan-Joiner, Shapiro-Francia, Jarque-Bera, 

Anderson-Darling, Lilliefor’s, Adjusted Jarque-Bera, 

Shapiro-Wilk and W/S test statistics. Hence, only 

D’Agostino test statistic is classified as Uniformly Most 

Powerful since it is effective for both small and large sample 

sizes. Other methods are Locally Most Powerful. Shapiro-

Francia, an improvement of Shapiro-Wilk is more sensitive 

for both small and large samples, hence should replace 

Shapiro-Wilk while the Adjusted Jarque-Bera and the Jarque-

Bera should both be retained for small and large samples 

respectively. 

Tanweer [34] evaluates the performance of some selected 

normality tests for the skewed alternative space. According 

to the researcher, stringency concept allows rank of 12 tests 

uniquely. Among the methods considered, Bonett and Seier 

test (Tw) turns out to be the best statistics for slightly skewed 

13 alternatives and the Anderson-Darling (AD), Chen-

Shapiro (CS), Shapiro-Wilk (W) and Bispo, 14 Marques, 

&Pestana, (BCMR) statistics were the best choices for 

moderately skewed alternative 15 distributions. Maximum 

loss of Jarque-Bera (JB) and its robust form (RJB), in terms 

of deviations 16 from the power envelope, is greater than 

50% even for large sample sizes which makes them less 17 

attractive in testing the hypothesis of normality against the 

moderately skewed alternatives. On 18 balance, all selected 

normality tests except Tw and COIN performed 

exceptionally well against the 19 highly skewed alternative 

space. 

According to Agnieszka [3], statistical inference in the 

form of hypothesis tests and confidence intervals often 

assumes that the underlying distribution is normal. 

Similarly, many signal processing techniques rely on the 

assumption that a stationary time series is normal. As a 

result, a number of tests have been proposed in the 

literature for detecting departures from normality. In this 

research Robert developed a novel approach to the problem 

of testing normality by constructing a statistical test based 

on the Edgeworth expansion, which approximates a 

probability distribution in terms of its cumulates. By 

modifying one term of the expansion, a define test statistic 

which includes information on the first four moments. 

performs a comparison of the proposed test with existing 

tests for normality by analyzing different platykurtic and 
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leptokurtic distributions including generalized Gaussian, 

mixed Gaussian, α-stable and Student’s t distributions. 

Robert showed that some proposed test is superior in terms 

of power for the platykurtic distributions whereas for the 

leptokurtic ones it is close to the best tests like those of 

D’Agostino-Pearson, Jarque-Bera and Shapiro-Wilk. 

Bruno and Norbet [6] confirmed the developments in 

affine invariant tests for multivariate normality with special 

emphasis on asymptotic properties of several classes of 

weighted L
2
-statistics. According to the researchers, 

weighted L
2
-statistics typically have limit normal 

distributions under fixed alternatives to normality, they open 

ground for a neighborhood of model validation for normality. 

The paper also reviews several other invariant tests for this 

problem, notably the energy test, and it presents the results of 

a large-scale simulation study. All tests under study are 

implemented in the accompanying R-package. 

Nasrin [26] showed that different univariate normality 

testing procedures are compared by using new algorithm. 

Different univariate and multivariate test are also analyzed 

and also review efficient algorithm for calculating the size 

corrected power of the test which can be used to compare the 

efficiency of the test. In the research, 100 data sets with 

combinations of sample sizes; n = 10, 20, 25, 30, 40, 50, 100, 

were generated from uniform distribution and tested by using 

different tests for randomness. The assessment of normality 

using statistical tests is sensitive to the sample size. It was 

observed that with the increase of sample size, overall 

powers are increased but Shapiro Wilk (SW) test is the most 

powerful test among other tests. 

3. Methodology 

Every research study has the main aim of finding solution 

to some define problems and in an attempt to solve the 

problems, various techniques and strategies are employed. 

The research process usually involves identifying the 

problems, making Hypothetical statements about the 

pleasured relationship among the variables, collecting and 

analyzing such data using the appropriate statistical tools. 

This procedure is known as the research mythology. In this 

section, these processes mentioned above will be treated and 

also the statistical tools to be employed in the analysis of the 

data highlighted. 

3.1. Statistical Methods 

The following univariate normality tests were considered 

in the research; 

3.1.1. Anderson-Darling Test [AD] 

The AD test is of the form: 

AD = � � [����� −

�
 Φ�x�]�	ψ�������� 

Where fn[x] is the empirical distribution function, ф[x] is 

the cumulative distribution function of the standard normal 

distribution and ᴪ[x] is a weight function [4]. 

3.1.2. D’Agostino-Pearson K
2
 test [DK] 

The test combines g1 and g2 to produce an omnibus test of 

normality. The test statistics is: 

K
2
 = Z

2
s + Z

2
k 

Z
2

s and Z
2

k are the normal approximations to sand k 

respectively [7]. The test statistic follows approximately a 

chi-square distribution with 2 degree of freedom when a 

population is normally distributed. The test is appropriate for 

a sample size of at least twenty. 

3.1.3. Shapiro-Wilk Test [sw] 

The Shapiro-wilk test uses a w-static [14, 30] which is 

defined as 

W=
�
� [∑ ����������� − �������� ]� 

Where m =
�
� if n is even while m = [n – 1]/2 if n is odd. 

D = ∑ [���� �i- �̅]
2
 and x[i] represents the i

th
 order statistic of 

the sample. 

The constants �� are given by 

(��, ��, … , ��� = �′���
 �′��������� !⁄  and m is given by m = 

(m1, m2, …, mn) where m1, m2,…mn are the expected values 

of the order statistics of independent and identically 

distributed random variables sampled from the standard 

normal distribution, and V is the covariance matrix of those 

order statistics. 

3.1.4. Bonett-Serial Test [BS] 

The test statistic Tw is given by: 

Tw = 
√���.[%�&]

&.'(  in which %	 is set by 

%	 = 13.29[In√)2 - In[n
-1∑ |����� I - �̅|]] 

This statistic follows a standard normal distribution under 

null hypothesis. 

3.1.5. Robust Jarque-Bera Test [RJB] 

The robust Jarque-Bera [RJB test statistics define as 

RJB= 
�
+ [�,

-., ]�+ 
�
+( [�/

-./ − 	3]�, 

Where Jn= 
1
�∑ |�� − )|, 2 = 34 26����  and M is the sample 

median. The RJB statistic is asymptotically 7��-distributed. 

3.1.6. Lilliefor’s Test (LL) 

The test statistics is defined as; 

8 = 9:;<|=∗��� − 9����| 
where	9���� is the sample cumulative distribution function 

and =∗��� is the cumulative distribution function (CDF) of 

the null distribution [23]. 

3.1.7. Cramer-Von Mises Test (CVM) 

In statistics the cramer-von mises criterion is a criterion 

used for judging the goodness of fit of a cumulative 

distribution function =∗  compared to a given empirical 
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distribution function =� , or for comparing two empirical 

distributions. It is also used as a part of other algorithms, 

such as minimum distance estimation. It is defined as; 

W� = D [



�

FF�x� − FG�x�]�df ∗�x� 

3.1.8. Skewness Test [SK] 

The skewness statistic is defined as 

SK = 

�
J∑ �GK�GL�,JKM�

��J∑ �GK�GL�!�, !6JKM�
 

Here, �̅ is the sample mean. 

3.1.9. Kurtosis Test [KU] 

The Kurtosis statistic is defined as: 

KU = 

�
J∑ �GK	�	GL�/JKM�

��J∑ �GK�	GL�!�!JKM�
− 3 

Here, �̅ is sample mean. The “ minus 3” at the end of this 

formula is often explained as a correction to make the 

kurtosis of the normal distribution equal to zero, as the 

kurtosis is 3 for a normal distribution. 

3.2. Data Presentation 

Data were stimulated from normal and non normal 

distributions with varying sample sizes (10, 20, 50 and 100). 

A replicate of 1000 was used at every point. 

Distribution of interest; 

1. Gamma Distribution 

2. Beta Distribution 

3. Uniform Distribution 

4. Normal Distribution 

3.3. Grouping of Normality Techniques into UMP and LMP 

Normality test statistic that is capable of detecting 

normality for both large and small sample sizes can be 

referred to as UMP. Test statistic that can only be used for 

either small or large sample size can be referred to as LMP 

[10]. This implies any normality test technique classified as 

UMP can be used for test of normality, irrespective of sample 

size of the data and the LMP tests must be used with caution. 

3.4. Algorithm for Monte Carlo Simulation 

According to Ukponmwan and Ajibade [35], Monte Carlo 

(MC) simulation can be used for the performance of an 

estimator. Monte Carlo procedure can be stated thus; 

1. Specify the data simulation procedure. 

2. Select desirable sample size n. 

3. Decide the desirable number of replicates. 

4. Generate a random sample of size n based on the Data. 

5. Using random sample generated, calculate the 

statistic(s). 

6. Go back to (4) and repeat (4) and (5) until desirable 

result is achieved. 

7. Examine the results for type I or type II error. 

3.5. Determination of Sensitivity of Normality Test 

In this paper, P-value was used for the determination of 

sensitivity of normality testing techniques considered. The 

decision rule can be stated as; reject the null hypothesis if the 

p-value is less than the level of significance. In this study, a 

p-value greater than 0.05 implies the set of data is normally 

distributed and the higher the value. 

According to Nornadiah and Yap [27], power of a 

statistical test is the probability that the test will reject the 

null hypothesis, when the alternative hypothesis is true (i.e. 

the probability of not committing a Type II error). The power 

is in general a function of the possible distributions, often 

determined by a parameter, under the alternative hypothesis. 

As the power of test increases, the chance of a Type II error 

occurring decreases [16, 21]. The probability of a Type II 

error occurring is referred to as the false negative rate (β). 

Therefore power of test is equal to 1 − β, which is also 

known as the sensitivity [8, 15]. 

4. Analysis 

In this section, simulation was carried out using symmetric 

and asymmetric distributions to capture possible distributions 

in existence in Statistics. Using the selected techniques, the 

data analysis was done using the steps below; 

i. Simulate data of sizes n = 10, 20, 50 and 100 from the 

four distributions 

ii. For each sample size, n, replicate 100 times, 

iii. Calculate the normality test statistics for each of the 

univariate normality tests 

Ii Reject/Accept the null hypothesis; 

H0: the data are normally distributed. 

H1: the data are not normally distributed. 

iv. Calculate the error rate = 

)1000(replicateofnumber

recordedisdecisionwrongtimesofnumber  

v. Calculate the type I error or power of test = 1- p(type II 

error) 

Analysis and Discussion of Result: Using R statistical 

package and Monte Carlo procedure, the following results 

were obtained; 

Table 1. Error Rate of SW. 

 Gamma distribution Betadistribution Uniform distribution Normal distribution 

10 0.278 0.274 0.227 0.050 

20 0.169 0.104 0.221 0.052 

50 0.123 0.180 0.140 0.050 

100 0.093 0.088 0.032 0.052 
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Table 2. Error Rate of Anderson Darling. 

 Gamma distribution Betadistribution Uniform distribution Normal distribution 

10 0.178 0.188 0.086 0.049 

20 0.128 0.174 0.077 0.053 

50 0.099 0.042 0.069 0.042 

100 0.074 0.007 0.021 0.049 

Table 3. Error Rate of Bonett-Serial Test. 

 Gamma distribution Betadistribution Uniform distribution Normal distribution 

10 0.012 0.093 0.055 0.007 

20 0.005 0.092 0.032 0.006 

50 0.009 0.078 0.011 0.008 

100 0.007 0.062 0.003 0.007 

Table 4. Error Rate of Robust Jarque-Bera Test. 

 Gamma distribution Betadistribution Uniform distribution Normal distribution 

10 0.042 0.024 0.065 0.009 

20 0.082 0.109 0.058 0.016 

50 0.091 0.185 0.023 0.040 

100 0.126 0.365 0.022 0.053 

Table 5. Error Rate of D’Agostino-Person Test. 

 Gamma distribution Betadistribution Uniform distribution Normal distribution 

10 0.026 0.080 0.034 0.044 

20 0.057 0.050 0.023 0.051 

50 0.021 0.080 0.022 0.054 

100 0.021 0.077 0.014 0.053 

Table 6. Error Rate of Skewness Test. 

 Gamma distribution Betadistribution Uniform distribution Normal distribution 

10 0.026 0.059 0.024 0.002 

20 0.057 0.055 0.022 0.020 

50 0.089 0.043 0.014 0.030 

100 0.059 0.042 0.008 0.033 

Table 7. Error Rate of Kurtosis Test. 

 Gamma distribution Betadistribution Uniform distribution Normal distribution 

10 0.086 0.093 0.087 0.056 

20 0.089 0.086 0.054 0.062 

50 0.090 0.083 0.035 0.044 

100 0.014 0.081 0.024 0.020 

Table 8. Error Rate of Lilliefores (LL) Test. 

 Gamma distribution Betadistribution Uniform distribution Normal distribution 

10 0.081 0.071 0.066 0.049 

20 0.066 0.039 0.054 0.058 

50 0.044 0.023 0.032 0.041 

100 0.011 0.010 0.023 0.053 

Table 9. Error Rate of Cramer–von Mises (CVM) Test. 

 Gamma distribution Betadistribution Uniform distribution Normal distribution 

10 0.065 0.033 0.045 0.059 

20 0.060 0.032 0.043 0.053 

50 0.017 0.012 0.025 0.057 

100 0.004 0.008 0.011 0.041 

From the tables presented above, it can be observed that no normality test statistic has 100 percent accuracy with respect to 
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samples sizes considered as well as the distributions considered. This is a signal that univariate normality test should be used 

with utmost caution to prevent types of error in hypotheses testing. 

Table 10. Power-of-Test of Selected Normality Test Statistics. 

 10 20 50 100 

Shapiro-Wilk     

Gamma 0.722 0.831 0.877 0.907 

Beta 0.726 0.896 0.82 0.912 

Uniform 0.773 0.779 0.86 0.968 

Normal 0.95 0.948 0.95 0.948 

Anderson Darling     

Gamma 0.822 0.872 0.901 0.926 

Beta 0.812 0.826 0.958 0.993 

Uniform 0.914 0.923 0.931 0.979 

Normal 0.951 0.947 0.958 0.951 

Bonett-Serial     

Gamma 0.988 0.995 0.991 0.993 

Beta 0.907 0.908 0.922 0.938 

Uniform 0.945 0.968 0.989 0.997 

Normal 0.993 0.994 0.992 0.993 

Robust Jarque-Bera     

Gamma 0.958 0.918 0.909 0.874 

Beta 0.976 0.891 0.815 0.635 

Uniform 0.935 0.942 0.977 0.978 

Normal 0.991 0.984 0.960 0.947 

D’Agostino-Person     

Gamma 0.974 0.943 0.979 0.979 

Beta 0.920 0.950 0.920 0.923 

Uniform 0.966 0.977 0.978 0.986 

Normal 0.956 0.949 0.946 0.947 

Skewness     

Gamma 0.974 0.943 0.911 0.941 

Beta 0.941 0.945 0.957 0.958 

Uniform 0.976 0.978 0.986 0.992 

Normal 0.998 0.980 0.970 0.967 

Kurtosis     

Gamma 0.914 0.911 0.910 0.986 

Beta 0.907 0.914 0.917 0.919 

Uniform 0.913 0.946 0.965 0.976 

Normal 0.944 0.938 0.956 0.980 

Lilliefores (LL)     

Gamma 0.919 0.934 0.956 0.989 

Beta 0.929 0.961 0.977 0.990 

Uniform 0.934 0.946 0.968 0.977 

Normal 0.951 0.942 0.959 0.947 

Cramer–von Mises (CVM)     

Gamma 0.935 0.940 0.983 0.996 

Beta 0.967 0.968 0.988 0.992 

Uniform 0.955 0.957 0.975 0.989 

Normal 0.941 0.947 0.943 0.959 

 

Table 10 shows strength of univariate normality tests 

considered with respect to some selected distributions. From 

the table, it can be observed that power of univariate test 

statistic is significantly affected by nature of the data 

(distribution). At this point, it is adequate to conclude that 

sample size and shape of data play vital role in the choice of 

normality test. 
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Figure 1. Power of test of Shapiro-Wilk test. 

 
Figure 2. Power of Test of Anderson Darling test. 

 
Figure 3. Power of test of Bonett-Serial test. 

 
Figure 4. Power of test of Robust Jarque-Beratest. 

 
Figure 5. Power of test of D’Agostino-Person test. 

 
Figure 6. Power of test ofSkewness test. 

 
Figure 7. Power of test of Kurtosis test. 

 
Figure 8. Power of test of Lilliefores (LL) test. 
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Figure 9. Power of test of Cramer–von Mises test. 

From figures 1 to 9, all the univariate normality test 

considered have significant power of test as the values are 

greater than 0.5 but less than 1.0. This implies researchers 

that formulated them have done a greater work for the 

formulation as all the methods show positive response in 

terms of application but the strength varies. 

5. Conclusion 

Test of normality plays a vital role in application of 

Statistics to data set as it prevents statistical error both type I 

and II errors. From the comparison, it is crystal clear that 

every test statistic for the determination of normality of a 

data set is adequate but the sensitivity vary significantly 

when sample size is taken into consideration. It was observed 

that shape of the data also affects the sensitivity of the 

technique. Care must be taken in considering any of the 

methods are uniformly most powerful but they are all locally 

most powerful. 

6. Recommendation 

Univariate normality tests must be used with great caution 

so as to prevent statistical error in the research. 

Since there are other methods for the test of normality, it is 

therefore right to recommend the comparison of some other 

methods for their sensitivity. 

Multivariate normality tests can also be compared to ease 

the strength of one by one test of normality in a large data set. 
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